[1] |
Ren YR, Fan L, Alkildani S, et al. Barrier membranes for guided bone regeneration (GBR): A focus on recent advances in collagen membranes[J]. Int J Mol Sci, 2022, 23(23): 14987.
|
[2] |
Abtahi S, Chen XH, Shahabi S, et al. Resorbable membranes for guided bone regeneration: Critical features, potentials, and limitations[J]. ACS Mater Au, 2023, 3(5): 394-417.
doi: 10.1021/acsmaterialsau.3c00013
pmid: 38089090
|
[3] |
张岚, 吴燕岷. 可吸收生物膜在牙周引导组织再生术中的研究进展[J]. 口腔医学, 2020, 40(6): 571-575.
|
[4] |
武小童, 何儿, 刘来俊, 等. 基于聚己内酯纤维的组织工程支架研究进展[J]. 中国生物医学工程学报, 2020, 39(5): 611-620.
|
[5] |
Lekovic V, Camargo PM, Klokkevold PR, et al. Preservation of alveolar bone in extraction sockets using bioabsorbable membranes[J]. J Periodontol, 1998, 69(9): 1044-1049.
doi: 10.1902/jop.1998.69.9.1044
pmid: 9776033
|
[6] |
Meinig RP. Clinical use of resorbable polymeric membranes in the treatment of bone defects[J]. Orthop Clin North Am, 2010, 41(1): 39-47.
|
[7] |
Dong RY, Tian SY, Bai JB, et al. Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane promotes nerve repair after neurolysis[J]. J Biomater Appl, 2022, 36(8): 1390-1399.
doi: 10.1177/08853282211060598
pmid: 34995155
|
[8] |
Dong RY, Liu CJ, Tian SY, et al. Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression[J]. PLoS One, 2020, 15(12): e0244301.
|
[9] |
He MJ, Li LS, Liu YJ, et al. Decellularized extracellular matrix coupled with polycaprolactone/laponite to construct a biomimetic barrier membrane for bone defect repair[J]. Int J Biol Macromol, 2024, 276(Pt 1): 133775.
|
[10] |
Qin XY, Wu YX, Liu S, et al. Surface modification of polycaprolactone scaffold with improved biocompatibility and controlled growth factor release for enhanced stem cell differentiation[J]. Front Bioeng Biotechnol, 2022, 9: 802311.
|
[11] |
Qi X, Liu Y, Ding ZY, et al. Synergistic effects of dimethyloxallyl Glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats[J]. Sci Rep, 2017, 7: 42820.
doi: 10.1038/srep42820
pmid: 28230059
|
[12] |
许雄程, 骆凯. 纳米硅酸镁锂在组织再生中的应用[J]. 中国生物工程杂志, 2022, 42(12): 61-68.
|
[13] |
Luo JW, Ma ZW, Yang FJ, et al. Fabrication of laponite-reinforced dextran-based hydrogels for NIR-responsive controlled drug release[J]. ACS Biomater Sci Eng, 2022, 8(4): 1554-1565.
doi: 10.1021/acsbiomaterials.1c01389
pmid: 35245017
|
[14] |
Wang RD, He X, Chen ZY, et al. A nanoparticle reinforced microporous methacrylated silk fibroin hydrogel to promote bone regeneration[J]. Biomater Sci, 2024, 12(8): 2121-2135.
|
[15] |
Xu XC, Zhuo J, Xiao L, et al. Nanosilicate-functionalized polycaprolactone orchestrates osteogenesis and osteoblast-induced multicellular interactions for potential endogenous vascularized bone regeneration[J]. Macromol Biosci, 2022, 22(2): e2100265.
|
[16] |
Alqahtani AM. Guided tissue and bone regeneration membranes: A review of biomaterials and techniques for periodontal treatments[J]. Polymers (Basel), 2023, 15(16): 3355.
|
[17] |
Wang XL, Shen PQ, Gu NN, et al. Dual Mg-reinforced PCL membrane with a Janus structure for vascularized bone regeneration and bacterial elimination[J]. ACS Biomater Sci Eng, 2024, 10(1): 537-549.
doi: 10.1021/acsbiomaterials.3c01360
pmid: 38065085
|
[18] |
Gaharwar AK, Cross LM, Peak CW, et al. 2D nanoclay for biomedical applications: Regenerative medicine, therapeutic delivery, and additive manufacturing[J]. Adv Mater, 2019, 31(23): e1900332.
|
[19] |
Lu MQ, Sun LY, Yao JR, et al. Protein-inorganic hybrid porous scaffolds for bone tissue engineering[J]. J Mater Chem B, 2022, 10(34): 6546-6556.
doi: 10.1039/d2tb00853j
pmid: 36000545
|
[20] |
Wu M, Han ZY, Liu W, et al. Silk-based hybrid microfibrous mats as guided bone regeneration membranes[J]. J Mater Chem B, 2021, 9(8): 2025-2032.
doi: 10.1039/d0tb02687e
pmid: 33555002
|
[21] |
Dawson JI, Kanczler JM, Yang XB, et al. Clay gels for the delivery of regenerative microenvironments[J]. Adv Mater, 2011, 23(29): 3304-3308.
doi: 10.1002/adma.201100968
|
[22] |
Kaur T, Khan N, Pasha Z, et al. Stem cells: Innovations, applications, and future directions[J]. J Pharm Bioallied Sci, 2024, 16(Suppl 4): S3041-S3043.
|
[23] |
Kafili G, Tamjid E, Niknejad H, et al. Development of bioinspired nanocomposite bioinks based on decellularized amniotic membrane and hydroxyethyl cellulose for skin tissue engineering[J]. Cellulose, 2024, 31(5): 2989-3013.
|
[24] |
颜杉钰, 梅宏翔, 李娟. 间充质干细胞迁移在骨组织损伤修复中的作用[J]. 口腔疾病防治, 2021, 29(12): 854-858.
doi: 10.12016/j.issn.2096-1456.2021.12.009
|
[25] |
Lin CC, Tao BL, Deng YM, et al. Matrix promote mesenchymal stromal cell migration with improved deformation via nuclear stiffness decrease[J]. Biomaterials, 2019, 217: 119300.
|
[26] |
Li T, Liu ZL, Xiao M, et al. Impact of bone marrow mesenchymal stem cell immunomodulation on the osteogenic effects of laponite[J]. Stem Cell Res Ther, 2018, 9(1): 100.
doi: 10.1186/s13287-018-0818-0
pmid: 29642953
|
[27] |
de Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling[J]. Biofabrication, 2023, 15(4): 10.1088/1758-10.1088/5090/ace0db.
|
[28] |
Ducy P. Cbfa1: A molecular switch in osteoblast biology[J]. Dev Dyn, 2000, 219(4): 461-471.
|
[29] |
Pang XL, Zhong ZD, Jiang F, et al. Juglans regia L. extract promotes osteogenesis of human bone marrow mesenchymal stem cells through BMP2/Smad/Runx2 and Wnt/β-catenin pathways[J]. J Orthop Surg Res, 2022, 17(1): 88.
doi: 10.1186/s13018-022-02949-1
pmid: 35164786
|
[30] |
Kim EE, Wyckoff HW. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis[J]. J Mol Biol, 1991, 218(2): 449-464.
doi: 10.1016/0022-2836(91)90724-k
pmid: 2010919
|
[31] |
Zhang BJ, Han ZW, Duan K, et al. Multilayered pore-closed PLGA microsphere delivering OGP and BMP-2 in sequential release patterns for the facilitation of BMSCs osteogenic differentiation[J]. J Biomed Mater Res A, 2018, 106(1): 95-105.
|
[32] |
Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype[J]. Endocr Rev, 1993, 14(4): 424-442.
doi: 10.1210/edrv-14-4-424
pmid: 8223340
|
[33] |
Dong LL, Bu ZH, Xiong YZ, et al. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration[J]. Int J Biol Macromol, 2021, 188: 72-81.
doi: 10.1016/j.ijbiomac.2021.07.199
pmid: 34364938
|
[34] |
Xu XC, Xiao L, Xu YM, et al. Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold[J]. Regen Biomater, 2021, 8(6): rbab061.
|
[35] |
Deng CJ, Yang Q, Sun XL, et al. Bioactive scaffolds with Li and Si ions-synergistic effects for osteochondral defects regeneration[J]. Appl Mater Today, 2018, 10: 203-216.
|
[36] |
He W, Chen J, Wang BX, et al. Chitosan microcarriers deposited with Mg2+-doped phase-transited lysozyme: Osteogenesis, pro-angiogenesis and anti-inflammatory for promoting bone regeneration[J]. Chem Eng J, 2024, 480: 147925.
|
[37] |
Mousa M, Milan JA, Kelly O, et al. The role of lithium in the osteogenic bioactivity of clay nanoparticles[J]. Biomater Sci, 2021, 9(8): 3150-3161.
|
[38] |
Chen ZQ, Xiao NQ, Luo L, et al. Nanosilicates facilitate periodontal regeneration potential by activating the PI3K-AKT signaling pathway in periodontal ligament cells[J]. J Nanobiotechnology, 2024, 22(1): 532.
|
[39] |
Hu Y, Li HG. Effects of unilateral nasal obstruction on mandibular condyle in mice of different ages: An exploration based on H-type angiogenesis coupling osteogenesis[J]. FASEB J, 2024, 38(19):e70082.
|
[40] |
Yang Y, Wang YD, Huang Y, et al. Interceed combined with bone marrow mesenchymal stem cells improves endometrial receptivity of intrauterine adhesion[J]. Regen Ther, 2024, 27: 445-454.
doi: 10.1016/j.reth.2024.04.007
pmid: 38706569
|
[41] |
Siavashi V, Sariri R, Nassiri SM, et al. Angiogenic activity of endothelial progenitor cells through angiopoietin-1 and angiopoietin-2[J]. Anim Cells Syst, 2016, 20(3): 118-129.
|
[42] |
Najary S, Nokhbatolfoghahaei H, Khojasteh A. The effect of Hypoxia-inducible factor-1a stabilization on bone regeneration during distraction osteogenesis: A systematic review of animal studies[J]. Arch Oral Biol, 2025, 172: 106184.
|
[43] |
Zuo PY, Liu YW, Zha XN, et al. Overexpression of Axl reverses endothelial cells dysfunction in high glucose and hypoxia[J]. J Cell Biochem, 2019, 120(7): 11831-11841.
|
[44] |
Liu B, Xu LL, Yu XM, et al. Protective effect of KLF15 on vascular endothelial dysfunction induced by TNF-α[J]. Mol Med Rep, 2018, 18(2): 1987-1994.
|
[45] |
Zhang YL, Yin JH, Ding H, et al. Vitamin K2 ameliorates damage of blood vessels by glucocorticoid: A potential mechanism for its protective effects in glucocorticoid-induced osteonecrosis of the femoral head in a rat model[J]. Int J Biol Sci, 2016, 12(7): 776-785.
doi: 10.7150/ijbs.15248
pmid: 27313492
|