[1] |
郑文文, 邱小玲. 锥形线束CT应用于下颌第一前磨牙解剖系统的研究[J]. 中国医药导报, 2023, 20(23): 119-124.
|
[2] |
徐青清, 王宇萌, 李梦圆, 等. 下颌第一前磨牙的形态特征与根管系统解剖的相关性分析[J]. 口腔医学, 2023, 43(7): 625-632.
|
[3] |
Mongillo AD, Araújo EA, Kim KB, et al. The effect of 4 first premolar extractions on the posterior Bolton ratio[J]. Am J OrthodDentofacial Orthop, 2021, 160(6): 825-834.
|
[4] |
Buchanan GD, Gamieldien MY, Fabris-Rotelli I, et al. A study of mandibular premolar root and canal morphology in a Black South African population using cone-beam computed tomography and two classification systems[J]. J Oral Sci, 2022, 64(4): 300-306.
|
[5] |
Shimada Y, Kojima I, Nishioka T, et al. Root canal narrowing patterns of mandibular first premolars on panoramic radiographs according to the number of root canals diagnosed on cone beam computed tomographic images[J]. Odontology, 2023, 111(1): 172-177.
|
[6] |
Vertucci FJ. Root canal morphology of mandibular premolars[J]. J Am Dent Assoc, 1978, 97(1): 47-50.
doi: 10.14219/jada.archive.1978.0443
pmid: 277575
|
[7] |
Fayad MI, Nair M, Levin MD, et al. AAE and AAOMR joint position statement use of cone beam computed tomography in endodontics 2015 update[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 120(4): 508-512.
|
[8] |
Robinson S, Czerny C, Gahleitner A, et al. Dental CT evaluation of mandibular first premolar root configurations and canal variations[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93(3): 328-332.
|
[9] |
Zheng YL, Zhou D, Liu H, et al. CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors[J]. Eur Radiol, 2022, 32(10): 6953-6964.
|
[10] |
Wolf TG, Kim P, Campus G, et al. 3-dimensional analysis and systematic review of root canal morphology and physiological foramen geometry of 109 mandibular first premolars by micro-computed tomography in a mixed Swiss-German population[J]. J Endod, 2020, 46(6): 801-809.
doi: S0099-2399(20)30151-5
pmid: 32303349
|
[11] |
Wu D, Hu DQ, Xin BC, et al. Root canal morphology of maxillary and mandibular first premolars analyzed using cone-beam computed tomography in a Shandong Chinese population[J]. Medicine(Baltimore), 2020, 99(20): e20116.
|
[12] |
Lingam AS, Koppolu P, Abdulsalam R, et al. Assessment of common errors and subjective quality of digital panoramic radiographs in dental institution, Riyadh[J]. Ann Afr Med, 2023, 22(1): 49-54.
doi: 10.4103/aam.aam_213_21
pmid: 36695222
|
[13] |
Yassaei S, Ezoddini-Ardakani F, Ostovar N. Predicting the actual length of premolar teeth on the basis of panoramic radiology[J]. Indian J Dent Res, 2010, 21(4): 468-473.
doi: 10.4103/0970-9290.74207
pmid: 21187607
|
[14] |
Bejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210.
doi: 10.1001/jama.2017.14585
pmid: 29234806
|
[15] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
|
[16] |
Liu FQ, Ning ZY, Liu YN, et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis(CHESS1701): A prospective multicenter study[J]. EBio Medicine, 2018, 36: 151-158.
|
[17] |
张静文, 张懿敏, 孙圣荣. 基于AI及影像组学在乳腺癌新辅助治疗中应用的研究进展[J]. 中国普外基础与临床杂志, 2024, 31(7): 881-885.
|
[18] |
Shen J, Du H, Wang YD, et al. A novel nomogram model combining CT texture features and urine energy metabolism to differentiate single benign from malignant pulmonary nodule[J]. Front Oncol, 2022, 12: 1035307.
|
[19] |
孔丹, 张建东, 单文莉, 等. CT影像组学模型对甲状腺良恶性结节的鉴别价值[J]. 中华放射学杂志, 2020, 54(3): 187-191.
|
[20] |
Luo YQ, Sun X, Kong X, et al. A DWI-based radiomics-clinical machine learning model to preoperatively predict the futile recanalization after endovascular treatment of acute basilar artery occlusion patients[J]. Eur J Radiol, 2023, 161: 110731.
|
[21] |
Wang YH, Ding Y, Liu X, et al. Preoperative CT-based radiomics combined with tumour spread through air spaces can accurately predict early recurrence of stage I lung adenocarcinoma: A multicentre retrospective cohort study[J]. Cancer Imaging, 2023, 23(1): 83.
doi: 10.1186/s40644-023-00605-3
pmid: 37679806
|