口腔医学 ›› 2025, Vol. 45 ›› Issue (9): 641-648.doi: 10.13591/j.cnki.kqyx.2025.09.001

• 基础与临床研究 •    下一篇

基于全景片的影像组学模型鉴别下颌第一前磨牙单、多根管的研究

胡慧君1,2,3, 蔡娟1,2,3, 朱文卿2,3,4, 邵水易1,2,3()   

  1. 1 南京医科大学附属口腔医院第二门诊部,江苏南京(210000)
    2 口腔疾病研究与防治国家级重点实验室,江苏南京(210029)
    3 江苏省口腔转化医学工程研究中心,江苏南京(210029)
    4 南京医科大学附属口腔医院口腔特诊科,江苏南京(210029)
  • 收稿日期:2025-03-10 出版日期:2025-09-28 发布日期:2025-09-11
  • 通讯作者: 邵水易 E-mail: shaoshuiyi@163.com
  • 基金资助:
    国家自然科学基金(82201096)

The diagnostic value of a radiomic model based on panoramic radiographs for differentiating between single and multiple root canals in mandibular first premolars

HU Huijun1,2,3, CAI Juan1,2,3, ZHU Wenqing2,3,4, SHAO Shuiyi1,2,3()   

  1. Department of Second Clinical Division, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
  • Received:2025-03-10 Online:2025-09-28 Published:2025-09-11

摘要:

目的 探讨全景片影像组学模型对下颌第一前磨牙单根管或多根管的鉴别价值。方法 回顾分析2022年7月至2023年11月间南京医科大学附属口腔医院摄有CBCT与全景片影像资料的患者共68例,131颗下颌第一前磨牙。其中下颌第一前磨牙单根管105颗,多根管26颗。采用分层随机抽样方法将所有纳入的下颌第一前磨牙按照8∶2的比例分为训练组(104颗)与测试组(27颗),采用CBCT确认患者的下颌第一前磨牙为单根管或多根管,并基于患者全景片图像提取影像组学特征。在降维筛选后,通过极度随机树(extra trees)、轻量级梯度提升机算法(LightGBM)、逻辑回归(LR)、多层感知机(MLP)、随机森林(random forest)、支持向量机(SVM)和极端梯度提升库(XGBoost)构建影像组学模型。通过受试者工作特征(ROC)曲线、准确性、敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)及决策曲线(DCA)选择最佳影像组学模型。结果 共从全景片中提取了107个影像组学特征。先将这些特征进行降维过滤,并通过Lasso模型最终筛选出4个影像组学特征。通过影像组学模型筛选,XGBoost模型显示出更高的预测效率和稳定性,训练组中的AUC为0.962,在测试组中为0.770。DCA曲线也显示XGBoost模型最佳。结论 全景片影像组学模型对下颌第一前磨牙单根管或多根管的鉴别具有良好的效能。

关键词: 影像组学, 下颌第一前磨牙, 根管分类, 全景片

Abstract:

Objective To explore the diagnostic value of the radiomic model based on panoramic radiographs in differentiating single or multiple root canals in mandibular first premolars. Methods A retrospective analysis was conducted on 68 patients with CBCT and panoramic radiographs from the affiliated Stomatological Hospital of Nanjing Medical University between July 2022 and November 2023. One hundred and thirty one mandibular first premolars (105 single-root and 26 multiple-root canals) were included in this study. Using stratified random sampling, the mandibular first premolars were divided into a training cohort (104 teeth) and a test cohort (27 teeth) at a ratio of 8∶2. CBCT was used to confirm the root canal configuration, and radiomic features were extracted from panoramic radiographs. After feature screening, radiomic models were constructed using extratrees, LightGBM, logistic regression(LR), multi-layer perceptron(MLP), random forest, support vector machine(SVM), and XGBoost. The optimal radiomic model was selected based on receiver operating characteristic(ROC) curve, accuracy, sensitivity, specificity, positive predictive value(PPV), negative predictive value(NPV), and decision curve analysis(DCA). Results A total of 107 radiomicfeatures were extracted from panoramic radiographs. After feature filtering, 4 radiomic features were ultimately selected using the Lasso model. The XGBoost model showed higher predictive efficiency and stability, with an AUC of 0.962 in the training cohort and 0.770 in the test cohort. DCA curves also indicated that the XGBoost model was optimal. Conclusion The radiomic model based on panoramic radiographs demonstrates good performance in differentiating single or multiple root canals in mandibular first premolars.

Key words: radiomics, mandibular first premolar, root canal classification, panoramic radiographs

中图分类号: