口腔医学 ›› 2023, Vol. 43 ›› Issue (7): 667-672.doi: 10.13591/j.cnki.kqyx.2023.07.016
• 综述 • 上一篇
修回日期:2022-08-27
									
				
									
				
											出版日期:2023-07-28
									
				
											发布日期:2023-07-28
									
			通讯作者:
					赵 彬 E-mail:
        
               		ZHANG Zhenyu,ZHAO Bin(
),MA Yanning
			  
			
			
			
                
        
    
Revised:2022-08-27
									
				
									
				
											Online:2023-07-28
									
				
											Published:2023-07-28
									
			摘要:
随着数字化医学影像学的发展,数字医疗逐步进入个性化。在数字化渗透下逐渐衍生出了一套含数据采集、三维重建、计算机设计、虚拟规划以及计算机辅助制作与术中指导的技术体系,数字化导板与导航技术也应运而生。导板与导航技术的出现可以缩短临床医生学习时间、提高手术精度、降低手术风险、推动精准医疗的发展。本文将从医学影像学出发,介绍数字化导板导航技术实现环节以及应用现状。
中图分类号:
张震宇, 赵彬, 马艳宁. 基于数字化影像学的导板与导航技术在口腔医学中的应用[J]. 口腔医学, 2023, 43(7): 667-672.
ZHANG Zhenyu, ZHAO Bin, MA Yanning. Application of guide and navigation technology based on digital imaging in stomatology[J]. Stomatology, 2023, 43(7): 667-672.
| [1] |  
											  Murakami R, Shiraishi S, Yoshida R, et al. Reliability of MRI-derived depth of invasion of oral tongue cancer[J]. Acad Radiol, 2019, 26(7):e180-e186. 
											 												 doi: 10.1016/j.acra.2018.08.021  | 
										
| [2] |  
											  Algarín JM, Díaz-Caballero E, Borreguero J, et al. Simultaneous imaging of hard and soft biological tissues in a low-field dental MRI scanner[J]. Sci Rep, 2020, 10(1):21470. 
											 												 doi: 10.1038/s41598-020-78456-2 pmid: 33293593  | 
										
| [3] |  
											  Daly S, Seong J, Parkinson C, et al. A proof of concept study to confirm the suitability of an intra oral scanner to record oral images for the non-invasive assessment of gingival inflammation[J]. J Dent, 2021, 105:103579. 
											 												 doi: 10.1016/j.jdent.2020.103579  | 
										
| [4] | 奚祺, 吴国锋. 数字化口内扫描技术的发展与应用[J]. 实用口腔医学杂志, 2021, 37(1):136-140. | 
| [5] |  
											  Haddadi Y, Bahrami G, Isidor F. Accuracy of intra-oral scans compared to conventional impression in vitro[J]. Prim Dent J, 2019, 8(3):34-39. 
											 												 doi: 10.1308/205016819827601491 pmid: 31666171  | 
										
| [6] |  
											  Halim IA, Park JH, Liou EJW, et al. Preliminary study: Evaluating the reliability of CBCT images for tongue space measurements in the field of orthodontics[J]. Oral Radiol, 2021, 37(2):256-266. 
											 												 doi: 10.1007/s11282-020-00443-0  | 
										
| [7] |  
											  Patil PG, Seow LL, Uddanwadikar R, et al. Biomechanical behavior of mandibular overdenture retained by two standard implants or 2 mini implants: A 3-dimensional finite element analysis[J]. J Prosthet Dent, 2021, 125(1):138.e1-138.e8. 
											 												 doi: 10.1016/j.prosdent.2020.09.015  | 
										
| [8] |  
											  Tanveer W, Ridwan-Pramana A, Molinero-Mourelle P, et al. Systematic review of clinical applications of CAD/CAM technology for craniofacial implants placement and manufacturing of orbital prostheses[J]. Int J Environ Res Public Health, 2021, 18(21):11349. 
											 												 doi: 10.3390/ijerph182111349  | 
										
| [9] |  
											  Chen J, Abousy M, Girard A, et al. The impact of virtual surgical planning on orthognathic surgery: Contributions from two specialties[J]. J Craniofac Surg, 2022, 33(5):1418-1423. 
											 												 doi: 10.1097/SCS.0000000000008607 pmid: 35258010  | 
										
| [10] | 武利兵, 高尚, 许阳阳, 等. 虚拟仿真手术与常规手术对肾结石治疗效果的比较[J]. 解剖学报, 2021, 52(4):609-617. | 
| [11] | Han BX, Li RY, Huang TQ, et al. An accurate 3D augmented reality navigation system with enhanced autostereoscopic display for oral and maxillofacial surgery[J]. Int J Med Robot, 2022, 18(4):e2404. | 
| [12] | Lee K, Tan SL, Low H, et al. Accuracy of 3-dimensional soft tissue prediction for orthognathic surgery in a Chinese population[J]. J Stomatol Oral Maxillofac Surg, 2022, 135(5):551-555. | 
| [13] |  
											  Knoops PGM, Borghi A, Breakey RWF, et al. Three-dimensional soft tissue prediction in orthognathic surgery: A clinical comparison of Dolphin, ProPlan CMF, and probabilistic finite element modelling[J]. Int J Oral Maxillofac Surg, 2019, 48(4):511-518. 
											 												 doi: 10.1016/j.ijom.2018.10.008  | 
										
| [14] |  
											  van Twisk PH, Tenhagen M, Gül A, et al. How accurate is the soft tissue prediction of Dolphin Imaging for orthognathic surgery?[J]. Int Orthod, 2019, 17(3):488-496. 
											 												 doi: 10.1016/j.ortho.2019.06.008  | 
										
| [15] |  
											  Sultan T, Cheah CW, Ibrahim NB, et al. Three-dimensional assessment of the extraction sockets, augmented with platelet-rich fibrin and calcium sulfate: A clinical pilot study[J]. J Dent, 2020, 101:103455. 
											 												 doi: 10.1016/j.jdent.2020.103455  | 
										
| [16] |  
											  Zhang C, Li ZB, Yang RT. Digital design and application of 3D printed surgical guide for long screw fixation of condylar sagittal fracture[J]. J Craniofac Surg, 2021, 32(7):e632-e634. 
											 												 doi: 10.1097/SCS.0000000000007605 pmid: 33674507  | 
										
| [17] |  
											  Silva BP, Mahn Arteaga G, Mahn E. Predictable 3D guided adhesive bonding of porcelain veneers using 3D printed trays[J]. J Esthet Restor Dent, 2021, 33(5):692-701. 
											 												 doi: 10.1111/jerd.12795 pmid: 34115445  | 
										
| [18] |  
											  Kim T, Lee S, Kim GB, et al. Accuracy of a simplified 3D-printed implant surgical guide[J]. J Prosthet Dent, 2020, 124(2):195-201.e2. 
											 												 doi: S0022-3913(19)30416-0 pmid: 31753464  | 
										
| [19] |  
											  Tamaki A, Rocco JW, Ozer E. The future of robotic surgery in otolaryngology-head and neck surgery[J]. Oral Oncol, 2020, 101:104510. 
											 												 doi: 10.1016/j.oraloncology.2019.104510  | 
										
| [20] | Yu W, Shiqi Z, Xiao W. Preliminary application of dental implant robot in dental implant operations[J]. Chin J Min Inv Surg, 2021, 21(9):787-791. | 
| [21] |  
											  Mantzavinou A, Uppara M, Chan J, et al. Robotic versus open pancreaticoduodenectomy, comparing therapeutic indexes: A systematic review[J]. Int J Surg, 2022, 101:106633. 
											 												 doi: 10.1016/j.ijsu.2022.106633  | 
										
| [22] | 蔡嫚, 王义洲, 祝庆海, 等. 改良数字化导板技术在下颌骨缺损腓骨肌皮瓣修复中的应用评价[J]. 上海口腔医学, 2021, 30(6):618-623. | 
| [23] | 孙黎波, 兰玉燕, 周航宇, 等. 基于数字化技术的游离腓骨肌皮瓣在下颌骨缺损中的应用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(7):626-629. | 
| [24] | 刘培才, 王志兴. 手术定位导板在埋伏多生牙拔除中的应用[J]. 华西口腔医学杂志, 2019, 37(1):58-61. | 
| [25] |  
											  汝悦, 刘国良, 王玲. 数字化定位导板在完全骨埋伏牙拔除术中的临床疗效分析[J]. 口腔医学研究, 2021, 37(12):1108-1114. 
											 												 doi: 10.13701/j.cnki.kqyxyj.2021.12.011  | 
										
| [26] |  
											  Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery[J]. BMC Oral Health, 2019, 19(1):238. 
											 												 doi: 10.1186/s12903-019-0937-8  | 
										
| [27] |  
											  Wu Y, Wang F, Fan S, et al. Robotics in dental implantology[J]. Oral Maxillofac Surg Clin North Am, 2019, 31(3):513-518. 
											 												 doi: 10.1016/j.coms.2019.03.013  | 
										
| [28] | 朱建华, 王晶, 刘筱菁, 等. 机器人辅助三叉神经半月节的穿刺精度研究[J]. 北京大学学报(医学版), 2019, 51(5):973-976. | 
| [29] |  
											  Chan HHL, Sahovaler A, Daly MJ, et al. Projected cutting guides using an augmented reality system to improve surgical margins in maxillectomies: A preclinical study[J]. Oral Oncol, 2022, 127:105775. 
											 												 doi: 10.1016/j.oraloncology.2022.105775  | 
										
| [30] |  
											  Lin CC, Wu CZ, Huang MS, et al. Fully digital workflow for planning static guided implant surgery: A prospective accuracy study[J]. J Clin Med, 2020, 9(4):980. 
											 												 doi: 10.3390/jcm9040980  | 
										
| [31] | 柳麟翔, 唐丽琴, 于美娜, 等. 数字化导板引导下全口种植即刻负重可行性与精准度的研究[J]. 口腔医学, 2022, 42(4):345-348. | 
| [32] | Tahmaseb A, Wu V, Wismeijer D, et al. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis[J]. Clin Oral Implants Res, 2018, 29(Suppl 16):416-435. | 
| [33] | Shan L, Pingchuan G, Guojing Z. Clinical analysis of the accuracy of digital guide[J]. Chin J Oral Implantol, 2021, 26(03):169-173. | 
| [34] |  
											  Franchina A, Stefanelli LV, Maltese F, et al. Validation of an intra-oral scan method versus cone beam computed tomography superimposition to assess the accuracy between planned and achieved dental implants: A randomized in vitro study[J]. Int J Environ Res Public Health, 2020, 17(24):9358. 
											 												 doi: 10.3390/ijerph17249358  | 
										
| [35] | Jorba-García A, Figueiredo R, González-Barnadas A, et al. Accuracy and the role of experience in dynamic computer guided dental implant surgery: An in-vitro study[J]. Med Oral Patol Oral Cir Bucal, 2019, 24(1):e76-e83. | 
| [36] | Bassetti MA, Bassetti RG, Bosshardt DD. The alveolar ridge splitting/expansion technique:A systematic review[J]. Clin Oral Implants Res, 2016, 27(3):310-324. | 
| [37] |  
											  Hamzah B, Mounir R, Ali S, et al. Maxillary horizontal alveolar ridge augmentation using computer guided ridge splitting with simultaneous implant placement versus conventional technique: A randomized clinical trial[J]. Clin Implant Dent Relat Res, 2021, 23(4):555-561. 
											 												 doi: 10.1111/cid.v23.4  | 
										
| [38] |  
											  Krastl G, Zehnder MS, Connert T, et al. Guided Endodontics: A novel treatment approach for teeth with pulp canal calcification and apical pathology[J]. Dent Traumatol, 2016, 32(3):240-246. 
											 												 doi: 10.1111/edt.12235 pmid: 26449290  | 
										
| [39] |  
											  Connert T, Krug R, Eggmann F, et al. Guided endodontics versus conventional access cavity preparation: A comparative study on substance loss using 3-dimensional-printed teeth[J]. J Endod, 2019, 45(3):327-331. 
											 												 doi: S0099-2399(18)30793-3 pmid: 30803541  | 
										
| [40] |  
											  Connert T, Zehnder MS, Amato M, et al. Microguided Endodontics: A method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique[J]. Int Endod J, 2018, 51(2):247-255. 
											 												 doi: 10.1111/iej.12809 pmid: 28665514  | 
										
| [41] | 高羽轩, 汪鎏, 傅裕杰, 等. 数字化导板引导技术辅助微创治疗前牙钙化根管[J]. 华西口腔医学杂志, 2022, 40(1):111-120. | 
| [42] |  
											  Llaquet Pujol M, Vidal C, Mercadé M, et al. Guided endodontics for managing severely calcified canals[J]. J Endod, 2021, 47(2):315-321. 
											 												 doi: 10.1016/j.joen.2020.11.026 pmid: 33278454  | 
										
| [43] |  
											  Torres A, Lerut K, Lambrechts P, et al. Guided endodontics: Use of a sleeveless guide system on an upper premolar with pulp canal obliteration and apical periodontitis[J]. J Endod, 2021, 47(1):133-139. 
											 												 doi: 10.1016/j.joen.2020.09.016 pmid: 33045264  | 
										
| [44] |  
											  Fonseca Tavares WL, de Oliveira Murta Pedrosa N, Moreira RA, et al. Limitations and management of static-guided endodontics failure[J]. J Endod, 2022, 48(2):273-279. 
											 												 doi: 10.1016/j.joen.2021.11.004  | 
										
| [45] |  
											  Wu M, Liu M, Cheng Y, et al. Treatment of pulp canal obliteration using a dynamic navigation system: Two case reports[J]. J Endod, 2022, 48(11):1441-1446. 
											 												 doi: 10.1016/j.joen.2022.07.014 pmid: 35963323  | 
										
| [46] |  
											  Zubizarreta-Macho Á, Muñoz AP, Deglow ER, et al. Accuracy of computer-aided dynamic navigation compared to computer-aided static procedure for endodontic access cavities: An in vitro study[J]. J Clin Med, 2020, 9(1):129. 
											 												 doi: 10.3390/jcm9010129  | 
										
| [47] |  
											  Ye SZ, Zhao SY, Wang WD, et al. A novel method for periapical microsurgery with the aid of 3D technology: A case report[J]. BMC Oral Health, 2018, 18(1):85. 
											 												 doi: 10.1186/s12903-018-0546-y pmid: 29747636  | 
										
| [48] |  
											  Gambarini G, Galli M, Stefanelli LV, et al. Endodontic microsurgery using dynamic navigation system: A case report[J]. J Endod, 2019, 45(11):1397-1402.e6. 
											 												 doi: S0099-2399(19)30544-8 pmid: 31515047  | 
										
| [49] |  
											  Giacomino CM, Ray JJ, Wealleans JA. Targetedendodontic microsurgery: A novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs-A report of 3 cases[J]. J Endod, 2018, 44(4):671-677. 
											 												 doi: S0099-2399(17)31310-9 pmid: 29426644  | 
										
| [50] | da Silva BP, Stanley K, Gardee J. Laminate veneers: Preplanning and treatment using digital guided tooth preparation[J]. JEsthetRestorDent, 2020, 32(2):150-160. | 
| [51] | 刘春煦, 高静, 赵雨薇, 等. 一种3D打印定深孔导板引导的精准牙体预备技术[J]. 华西口腔医学杂志, 2020, 38(3):354-359. | 
| [52] |  
											  Pozzi A, Hansson L, Carosi P, et al. Dynamic navigation guided surgery and prosthetics for immediate loading of complete-arch restoration[J]. J Esthet Restor Dent, 2021, 33(1):224-236. 
											 												 doi: 10.1111/jerd.12710 pmid: 33470044  | 
										
| [53] |  
											  Krishnan V. Conventional or digital-Orthodontic study models are here to stay![J]. J World Fed Orthod, 2021, 10(2):41-42. 
											 												 doi: 10.1016/j.ejwf.2021.05.002 pmid: 34088444  | 
										
| [54] |  
											  Choi EHA, Park JH, Erdenebat T, et al. Surgical treatment of a skeletal Class Ⅲ patient using customized brackets based on the CAD/CAM virtual orthodontic system[J]. Angle Orthod, 2021, 91(5):692-704. 
											 												 doi: 10.2319/060820-528.1  | 
										
| [55] |  
											  艾合买提·木合塔尔, 杨宏业, 赵亚宁, 等. 湖北省口腔医生对数字化技术认知及应用情况调查[J]. 口腔医学研究, 2021, 37(12):1084-1088. 
											 												 doi: 10.13701/j.cnki.kqyxyj.2021.12.006  | 
										
| [1] | 吴江, 陈吉华. 数字化技术在可摘局部义齿和全口义齿制作中的应用现状与未来[J]. 口腔医学, 2022, 42(5): 385-390. | 
| [2] | 李长顺, 张堃, 刘刚, 魏路明, 朱绍跃, 胡光宇, 宋晓萌. 数字化导板在下颌舌侧后牙区埋伏多生牙拔除中的应用[J]. 口腔医学, 2022, 42(11): 984-989. | 
| [3] | 郭松松, 张平, 程杰, 江宏兵. 数字化技术在口腔颌面部创伤治疗中的应用及展望[J]. 口腔医学, 2022, 42(1): 36-41. | 
| [4] | 徐波 冉红兵 林川 杨丽俊 李文 陈尧. 3D打印下颌骨定位及连接导板在下颌骨缺损修复中的应用[J]. , 2020, 40(8): 731-737. | 
| [5] | 张莹莹 张志宏 刘红红 陈佳 芮茜 蒋晔. CAD/CAM导板在后牙区种植精度的体外研究[J]. , 2019, 39(1): 15-19. | 
| [6] | 操亚波 傅露 郁雯科 王硕 李伯休 陈丹鹏. 数字化排牙试验在正畸病例拔牙与否判断中的应用[J]. , 2019, 39(1): 44-47. | 
| [7] | 万竹青 沈国芳. 正颌手术上颌骨精确定位技术的进展[J]. , 2018, 38(10): 934-937. | 
| [8] | 丁晓军 邱憬 汤春波. 自主研发CAD/CAM种植导板制作系统在无牙颌种植修复中的临床应用研究[J]. , 2016, 36(5): 421-424. | 
| [9] | 赵毅 张晓真 汤春波. 多牙缺失患者计算机导板应用下种植术后误差研究[J]. , 2016, 36(3): 214-218. | 
| [10] | 张侃. 计算机种植导板在斜向种植手术的应用[J]. , 2015, 35(11): 961-963. | 
| [11] | 陈金林 刘正彤 许海军 王思 胡小坤. 改良固定斜面导板矫治第二磨牙正锁[J]. , 2014, 34(9): 655-657. | 
| [12] | 矫忻 刘海蓉 赵永. 自制种植牙手术导板临床研究[J]. , 2014, 34(7): 558-559. | 
| [13] | 芮娜 汤春波 戴文雍 邱憬 戴宁. 计算机辅助设计制造牙种植导板软件的自主研发[J]. , 2014, 34(10): 743-745. | 
| [14] | 刘志良. 数字化导板在陈旧性颧眶骨折治疗中的应用[J]. , 2012, 32(10): 586-588,612. | 
| [15] | 俞贤江. 上颌斜面导板在安氏Ⅱ类1分类错矫治中的疗效分析[J]. , 2011, 31(8): 507-508. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
苏公网安备32010602011670号