[1] |
Cevidanes LHS, Bailey LJ, Tucker SF, et al. Three-dimensional cone-beam computed tomography for assessment of mandibular changes after orthognathic surgery[J]. Am J Orthod Dentofacial Orthop, 2007, 131(1): 44-50.
|
[2] |
Bollen AM. Cephalometry in orthodontics: 2D and 3D[J]. Am J Orthod Dentofac Orthop, 2019, 156(1): 161.
|
[3] |
Ghoneima A, Cho H, Farouk K, et al. Accuracy and reliability of landmark-based, surface-based and voxel-based 3D cone-beam computed tomography superimposition methods[J]. Orthod Craniofac Res, 2017, 20(4): 227-236.
doi: 10.1111/ocr.12205
pmid: 28960842
|
[4] |
Koerich L, Burns D, Weissheimer A, et al. Three-dimensional maxillary and mandibular regional superimposition using cone beam computed tomography: A validation study[J]. Int J Oral Maxillofac Surg, 2016, 45(5): 662-669.
|
[5] |
Hayashi K, Chung O, Park S, et al. Influence of standardization on the precision (reproducibility) of dental cast analysis with virtual 3-dimensional models[J]. Am J Orthod Dentofacial Orthop, 2015, 147(3): 373-380.
|
[6] |
Yoon JH, Yu HS, Choi Y, et al. Model analysis of digital models in moderate to severe crowding: In vivo validation and clinical application[J]. Biomed Res Int, 2018, 2018: 8414605.
|
[7] |
Chen J, Li SN, Fang S. Quantification of tooth displacement from cone-beam computed tomography images[J]. Am J Orthod Dentofacial Orthop, 2009, 136(3): 393-400.
|
[8] |
Lim SW, Hwang HS, Cho IS, et al. Registration accuracy between intraoral-scanned and cone-beam computed tomography-scanned crowns in various registration methods[J]. Am J Orthod Dentofacial Orthop, 2020, 157(3): 348-356.
|
[9] |
Park JH, Hwang CJ, Choi YJ, et al. Registration of digital dental models and cone-beam computed tomography images using 3-dimensional planning software: Comparison of the accuracy according to scanning methods and software[J]. Am J Orthod Dentofacial Orthop, 2020, 157(6): 843-851.
|
[10] |
Cevidanes LHC, Heymann G, Cornelis MA, et al. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients[J]. Am J Orthod Dentofacial Orthop, 2009, 136(1): 94-99.
|
[11] |
Weissheimer A, Menezes LM, Koerich L, et al. Fast three-dimensional superimposition of cone beam computed tomography for orthopaedics and orthognathic surgery evaluation[J]. Int J Oral Maxillofac Surg, 2015, 44(9): 1188-1196.
|
[12] |
de Oliveira Ruellas AC, Huanca GhislanzoniLT, Gomes MR, et al. Comparison and reproducibility of 2 regions of reference for maxillary regional registration with cone-beam computed tomography[J]. Am J Orthod Dentofacial Orthop, 2016, 149(4): 533-542.
|
[13] |
Ruellas AC, Yatabe MS, Souki BQ, et al. 3D mandibular superimposition: Comparison of regions of reference for voxel-based registration[J]. PLoS One, 2016, 11(6): e0157625.
|
[14] |
Nguyen T, Cevidanes L, Franchi L, et al. Three-dimensional mandibular regional superimposition in growing patients[J]. Am J Orthod Dentofacial Orthop, 2018, 153(5): 747-754.
|
[15] |
Chen G, Al Awadi M, Chambers DW, et al. The three-dimensional stable mandibular landmarks in patients between the ages of 12.5 and 17.1 years[J]. BMC Oral Health, 2020, 20(1): 153.
doi: 10.1186/s12903-020-01142-2
pmid: 32460733
|
[16] |
Lysell L. Plicae palatinaetransversae and papilla incisiva in man: A morphologic and genetic study[J]. Acta Odontol Scand, 1955, 13(Suppl. 18): 5-137.
|
[17] |
Thiruvenkatachari B, Al-Abdallah M, Akram NC, et al. Measuring 3-dimensional tooth movement with a 3-dimensional surface laser scanner[J]. Am J Orthod Dentofacial Orthop, 2009, 135(4): 480-485.
|
[18] |
Saadeh M, Macari A, Haddad R, et al. Instability of palatal rugae following rapid maxillary expansion[J]. Eur J Orthod, 2017, 39(5): 474-481.
|
[19] |
Hoggan BR, Sadowsky C. The use of palatal rugae for the assessment of anteroposterior tooth movements[J]. Am J Orthod Dentofacial Orthop, 2001, 119(5): 482-488.
|
[20] |
Liu J, Koh KM, Choi SH, et al. Validation of three-dimensional digital model superimpositions based on palatal structures in patients with maximum anterior tooth retraction following premolar extraction[J]. Korean J Orthod, 2022, 52(4): 258-267.
doi: 10.4041/kjod21.126
pmid: 35875849
|
[21] |
Jang I, Tanaka M, Koga Y, et al. A novel method for the assessment of three-dimensional tooth movement during orthodontic treatment[J]. Angle Orthod, 2009, 79(3): 447-453.
doi: 10.2319/042308-225.1
pmid: 19413387
|
[22] |
Talaat S, Kaboudan A, Bourauel C, et al. Validity and reliability of three-dimensional palatal superimposition of digital dental models[J]. Eur J Orthod, 2017, 39(4): 365-370.
|
[23] |
Vasilakos G, Schilling R, Halazonetis D, et al. Assessment of different techniques for 3D superimposition of serial digital maxillary dental casts on palatal structures[J]. Sci Rep, 2017, 7(1): 5838.
doi: 10.1038/s41598-017-06013-5
pmid: 28724930
|
[24] |
Charalampakis O, Iliadi A, Ueno H, et al. Accuracy of clear aligners: A retrospective study of patients who needed refinement[J]. Am J Orthod Dentofac Orthop, 2018, 154(1): 47-54.
|
[25] |
An K, Jang I, Choi DS, et al. Identification of a stable reference area for superimposing mandibular digital models[J]. J Orofac Orthop, 2015, 76(6): 508-519.
doi: 10.1007/s00056-015-0310-8
pmid: 26250456
|
[26] |
García-García AS, Martínez-González JM, Gómez-Font R, et al. Current status of the torus palatinus and torus mandibularis[J]. Med Oral Patol Oral CirBucal, 2010, 15(2): e353-e360.
|
[27] |
Ioshida M, Muñoz BA, Rios H, et al. Accuracy and reliability of mandibular digital model registration with use of the mucogingival junction as the reference[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 127(4): 351-360.
|
[28] |
Oueiss A, Camia J, Masucci C, et al. Exploring the mylohyoid area as a reference for three-dimensional digital mandibular superimposition[J]. J Stomatol Oral Maxillofac Surg, 2022, 123(6): 672-676.
doi: 10.1016/j.jormas.2022.07.016
pmid: 35907610
|
[29] |
Choi DS, Jeong YM, Jang I, et al. Accuracy and reliability of palatal superimposition of three-dimensional digital models[J]. Angle Orthod, 2010, 80(4): 497-503.
|
[30] |
Lin L, Li CS, Chen SH, et al. Transverse growth of the mandibular body in untreated children: A longitudinal CBCT study[J]. Clin Oral Investig, 2023, 27(5): 2097-2107.
|
[31] |
Bilello G, Fazio M, Amato E, et al. Accuracy evaluation of orthodontic movements with aligners: A prospective observational study[J]. Prog Orthod, 2022, 23(1): 12.
doi: 10.1186/s40510-022-00406-7
pmid: 35399128
|
[32] |
Castroflorio T, Sedran A, Parrini S, et al. Predictability of orthodontic tooth movement with aligners: Effect of treatment design[J]. Prog Orthod, 2023, 24(1): 2.
doi: 10.1186/s40510-022-00453-0
pmid: 36642743
|
[33] |
Murphy SJ, Lee S, Scharm JC, et al. Comparison of maxillary anterior tooth movement between Invisalign and fixed appliances[J]. Am J Orthod Dentofacial Orthop, 2023, 164(1): 24-33.
|
[34] |
Impellizzeri A, Horodynski M, De Stefano A, et al. CBCT and intra-oral scanner: The advantages of 3D technologies in orthodontic treatment[J]. Int J Environ Res Public Health, 2020, 17(24): 9428.
|
[35] |
Taylor KL, Evangelista K, Muniz L, et al. Three-dimensional comparison of the skeletal and dentoalveolar effects of the Herbst and Pendulum appliances followed by fixed appliances: A CBCT study[J]. Orthod Craniofac Res, 2020, 23(1): 72-81.
doi: 10.1111/ocr.12345
pmid: 31514261
|
[36] |
Choi EH A, Lee KJ, Choi SH, et al. Skeletal and dentoalveolar effects of miniscrew-assisted rapid palatal expansion based on the length of the miniscrew: A randomized clinical trial[J]. Angle Orthod, 2023, 93(4): 390-397.
|
[37] |
宋欣羽, 钱玉芬. 正畸治疗对颞下颌关节影响的锥形束CT研究进展[J]. 中国实用口腔科杂志, 2021, 14(4): 482-487.
|
[38] |
Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography[J]. Angle Orthod, 2014, 84(6): 1018-1025.
doi: 10.2319/112713-869.1
pmid: 24713070
|
[39] |
Wei RY, Atresh A, Ruellas A, et al. Three-dimensional condylar changes from Herbst appliance and multibracket treatment: A comparison with matched Class Ⅱ elastics[J]. Am J Orthod Dentofacial Orthop, 2020, 158(4): 505-517.e6.
|
[40] |
Vilefort PLC, Farah LO, Gontijo HP, et al. Condyle-glenoid fossa relationship after Herbst appliance treatment during two stages of craniofacial skeletal maturation: A retrospective study[J]. Orthod Craniofac Res, 2019, 22(4): 345-353.
doi: 10.1111/ocr.12338
pmid: 31419375
|
[41] |
Ying XW, Tian KY, Zhang KY, et al. Accuracy of virtual surgical planning in segmental osteotomy in combination with bimaxillary orthognathic surgery with surgery first approach[J]. BMC Oral Health, 2021, 21(1): 529.
doi: 10.1186/s12903-021-01892-7
pmid: 34654418
|
[42] |
Han YS, Jung YE, Song IS, et al. Three-dimensional computed tomographic assessment of temporomandibular joint stability after orthognathic surgery[J]. J Oral Maxillofac Surg, 2016, 74(7): 1454-1462.
|
[43] |
Wang H, Minnema J, Batenburg KJ, et al. Multiclass CBCT image segmentation for orthodontics with deep learning[J]. J Dent Res, 2021, 100(9): 943-949.
|
[44] |
Wu TH, Lian CF, Lee S, et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans[J]. IEEE Trans Med Imaging, 2022, 41(11): 3158-3166.
|
[45] |
Dolatabadi N, Boyd RL, Oh H. Comparison between a human judge and automatic landmark identification on digital models[J]. Am J Orthod Dentofacial Orthop, 2022, 162(2): 257-263.
|