[1] |
李明玥, 肖爽, 栾霖群, 等. 牙发生相关磷蛋白促进成骨细胞粘附及矿化研究[J]. 口腔医学研究, 2023, 39(9): 810-814.
doi: 10.13701/j.cnki.kqyxyj.2023.09.009
|
[2] |
Brånemark PI. Osseointegration and its experimental background[J]. J Prosthet Dent, 1983, 50(3): 399-410.
doi: 10.1016/s0022-3913(83)80101-2
pmid: 6352924
|
[3] |
He XD, Yamada M, Watanabe J, et al. Titanium nanotopography induces osteocyte lacunar-canalicular networks to strengthen osseointegration[J]. Acta Biomater, 2022, 151: 613-627.
|
[4] |
Zhao QM, Yi L, Jiang LB, et al. Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation[J]. Nanomedicine, 2019, 16: 149-161.
|
[5] |
Chen SC, Guo YL, Liu RH, et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration[J]. Colloids Surf B Biointerfaces, 2018, 164: 58-69.
|
[6] |
Qi XY, Shang YL, Sui L. State of osseointegrated titanium implant surfaces in topographical aspect[J]. J Nanosci Nanotechnol, 2018, 18(12): 8016-8028.
doi: 10.1166/jnn.2018.16381
pmid: 30189918
|
[7] |
Guadarrama Bello D, Fouillen A, Badia A, et al. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells[J]. Acta Biomater, 2017, 60: 339-349.
doi: S1742-7061(17)30459-2
pmid: 28728969
|
[8] |
Roy S, Ruest PJ, Hanks SK. FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation[J]. J Cell Biochem, 2002, 84(2): 377-388.
pmid: 11787067
|
[9] |
Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: A regulator of cellular function through focal adhesions[J]. Nanomedicine, 2010, 6(5): 619-633.
doi: 10.1016/j.nano.2010.01.009
pmid: 20138244
|
[10] |
Li Y, Li BE, Song YJ, et al. Improved osteoblast adhesion and osseointegration on TiO2 nanotubes surface with hydroxyapatite coating[J]. Dent Mater J, 2019, 38(2): 278-286.
|
[11] |
Zhang YN, Wang K, Dong K, et al. Enhanced osteogenic differentiation of osteoblasts on CaTiO3 nanotube film[J]. Colloids Surf B Biointerfaces, 2020, 187: 110773.
|
[12] |
杨帮成, 周学东, 于海洋, 等. 钛种植体表面改性方法[J]. 华西口腔医学杂志, 2019, 37(2): 124-129.
|
[13] |
Zhu Y, Zheng TX, Wen LM, et al. Osteogenic capability of strontium and icariin-loaded TiO2 nanotube coatings in vitro and in osteoporotic rats[J]. J Biomater Appl, 2021, 35(9): 1119-1131.
doi: 10.1177/0885328221997998
pmid: 33632004
|
[14] |
Li Y, Song YJ, Ma AB, et al. Surface immobilization of TiO2nanotubes with bone morphogenetic protein-2 synergistically enhances initial preosteoblast adhesion and osseointegration[J]. Biomed Res Int, 2019, 2019: 5697250.
|
[15] |
Thamma U, Kowal TJ, Falk MM, et al. Nanostructure of bioactive glass affects bone cell attachment via protein restructuring upon adsorption[J]. Sci Rep, 2021, 11(1): 5763.
doi: 10.1038/s41598-021-85050-7
pmid: 33707489
|
[16] |
Su EP, Justin DF, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces[J]. Bone Joint J, 2018, 100-B(1 Supple A): 9-16.
doi: 10.1302/0301-620X.100B1.BJJ-2017-0551.R1
pmid: 29292334
|
[17] |
Park J, Cimpean A, Tesler AB, et al. Anodic TiO2nanotubes: Tailoring osteoinduction via drug delivery[J]. Nanomaterials, 2021, 11(9): 2359.
|
[18] |
Kulkarni M, Mazare A, Park J, et al. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence[J]. Acta Biomater, 2016, 45: 357-366.
doi: S1742-7061(16)30455-X
pmid: 27581395
|
[19] |
Wu LN, Zhou CC, Zhang BQ, et al. Construction of biomimetic natural wood hierarchical porous-structure bioceramic with micro/nanowhisker coating to modulate cellular behavior and osteoinductive activity[J]. ACS Appl Mater Interfaces, 2020, 12(43): 48395-48407.
|
[20] |
Li XD, Wang MY, Zhang WJ, et al. A magnesium-incorporated nanoporous titanium coating for rapid osseointegration[J]. Int J Nanomedicine, 2020, 15: 6593-6603.
|
[21] |
Shen XK, Al-Baadani MA, He HL, et al. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo[J]. Int J Nanomedicine, 2019, 14: 3043-3054.
|
[22] |
Liu J, Wang YL, Goh WI, et al. Talin determines the nanoscale architecture of focal adhesions[J]. Proc Natl Acad Sci USA, 2015, 112(35): E4864-E4873.
|
[23] |
Gallagher JO, McGhee KF, Wilkinson CDW, et al. Interaction of animal cells with ordered nanotopography[J]. IEEE Trans Nanobioscience, 2002, 1(1): 24-28.
|
[24] |
Hou C, An J, Zhao DY, et al. Surface modification techniques to produce micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration[J]. Front Bioeng Biotechnol, 2022, 10: 835008.
|
[25] |
Luo JJ, Zhao SD, Gao XS, et al. TiO2nanotopography-driven osteoblast adhesion through Coulomb’s force evolution[J]. ACS Appl Mater Interfaces, 2022, 14(30): 34400-34414.
|
[26] |
Lou HY, Zhao WT, Zeng YP, et al. The role of membrane curvature in nanoscale topography-induced intracellular signaling[J]. Acc Chem Res, 2018, 51(5): 1046-1053.
|
[27] |
Schaeske J, Fadeeva E, Schlie-Wolter S, et al. Cell type-specific adhesion and migration on laser-structured opaque surfaces[J]. Int J Mol Sci, 2020, 21(22): 8442.
|
[28] |
Salaie RN, Besinis A, Le HR, et al. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells[J]. Mater Sci Eng C Mater Biol Appl, 2020, 107: 110210.
|
[29] |
Wang H, Zhang XR, Wang HC, et al. Enhancing the osteogenic differentiation and rapid osseointegration of 3D printed Ti6Al4Vimplants via nano-topographic modification[J]. J Biomed Nanotechnol, 2018, 14(4): 707-715.
doi: 10.1166/jbn.2018.2551
pmid: 31352944
|
[30] |
Ghezzi B, Lagonegro P, Attolini G, et al. Hydrogen plasma treatment confers enhanced bioactivity to silicon carbide-based nanowires promoting osteoblast adhesion[J]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111772.
|
[31] |
Xiao SJ, Wang M, Wang LP, et al. Environment-friendly synthesis of trace element Zn, Sr, and F codoping hydroxyapatite with non-cytotoxicity and improved osteoblast proliferation and differentiation[J]. Biol Trace Elem Res, 2018, 185(1): 148-161.
doi: 10.1007/s12011-017-1226-5
pmid: 29349676
|
[32] |
Mi BG, Xiong W, Xu N, et al. Strontium-loaded titania nanotube arrays repress osteoclast differentiation through multiple signalling pathways: in vitro and in vivo studies[J]. Sci Rep, 2017, 7(1): 2328.
|
[33] |
Qiao HX, Song GQ, Huang Y, et al. Si, Sr, Ag Co-doped hydroxyapatite/TiO2 coating: Enhancement of its antibacterial activity and osteoinductivity[J]. RSC Adv, 2019, 9(24): 13348-13364.
|
[34] |
Wang BB, Bian AQ, Jia FH, et al. “Dual-functional” strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration[J]. Biomater Adv, 2022, 133: 112650.
|
[35] |
González Ocampo JI, Machado de Paula MM, Bassous NJ, et al. Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite[J]. Acta Biomater, 2019, 83: 425-434.
doi: S1742-7061(18)30622-6
pmid: 30342285
|
[36] |
da Silva RA, da Silva Feltran G, Ferreira MR, et al. The impact of bioactive surfaces in the early stages of osseointegration: An in vitro comparative study evaluating the HAnano and SLActive super hydrophilic surfaces[J]. Biomed Res Int, 2020, 2020: 3026893.
|
[37] |
Wozniak MA, Modzelewska K, Kwong L, et al. Focal adhesion regulation of cell behavior[J]. Biochim Biophys Acta, 2004, 1692(2/3): 103-119.
|
[38] |
Bai L, Liu YL, Du ZB, et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration[J]. Acta Biomater, 2018, 76: 344-358.
doi: S1742-7061(18)30369-6
pmid: 29908975
|
[39] |
Li B, Gao P, Zhang HQ, et al. Osteoimmunomodulation, osseointegration, and in vivo mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer[J]. Biomater Sci, 2018, 6(12): 3202-3218.
|
[40] |
Mondal S, Park S, Choi J, et al. Hydroxyapatite: A journey from biomaterials to advanced functional materials[J]. Adv Colloid Interface Sci, 2023, 321: 103013.
|
[41] |
Bellis SL. Advantages of RGD peptides for directing cell associationwith biomaterials[J]. Biomaterials, 2011, 32(18): 4205-4210.
doi: 10.1016/j.biomaterials.2011.02.029
pmid: 21515168
|
[42] |
Taubenberger AV, Woodruff MA, Bai HF, et al. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation[J]. Biomaterials, 2010, 31(10): 2827-2835.
doi: 10.1016/j.biomaterials.2009.12.051
pmid: 20053443
|
[43] |
Zhu YC, Cao Z, Peng Y, et al. Facile Surface modification method for synergistically enhancing the biocompatibility and bioactivity of poly(ether ether ketone) that induced osteodifferentia-tion[J]. ACS Appl Mater Interfaces, 2019, 11(31): 27503-27511.
|
[44] |
Hao L, Lawrence J, Chian KS. Osteoblast cell adhesion on a laser modified zirconia based bioceramic[J]. J Mater Sci Mater Med, 2005, 16(8): 719-726.
|
[45] |
Huang ZF, Wang ZF, Li CH, et al. The osteoinduction of RGD and Mg ion functionalized bioactive zirconia coating[J]. J Mater Sci Mater Med, 2019, 30(8): 95.
|
[46] |
刘菲, 张云涛, 马向瑞, 等. 精氨酰-甘氨酰-天冬氨酸多肽层层自组装修饰钛片对小鼠成骨样细胞MC3T3-E1的影响[J]. 国际口腔医学杂志, 2019, 46(2): 203-208.
|