口腔医学 ›› 2026, Vol. 46 ›› Issue (1): 35-40.doi: 10.13591/j.cnki.kqyx.2026.01.006
收稿日期:2025-11-01
出版日期:2026-01-28
发布日期:2026-01-16
通讯作者:
周媛,郑黎薇
E-mail:zhou.yuan@scu.edu.cn;liwei.zheng@scu.edu.cn
作者简介:郑黎薇,口腔医学博士,四川大学华西口腔医院教授,博导,编辑部主任。美国加州大学旧金山分校联合培养博士(2008—2010),约翰霍普金斯大学访问学者(2012—2014)。中华口腔医学会遗传病与罕见病专委会副主任委员、口腔生物医学专委会委员,四川省女医师协会常务理事,口腔专委会主任委员,四川省口腔医学会副秘书长、儿童口腔医学专委会副主任委员。获国家科技进步二等奖、中华医学科技奖青年科技奖、四川省科技进步二等奖、四川省杰出青年基金。
基金资助:
ZHANG Jiexin, ZHOU Yuan(
), ZHENG Liwei(
)
Received:2025-11-01
Online:2026-01-28
Published:2026-01-16
Contact:
ZHOU Yuan, ZHENG Liwei
E-mail:zhou.yuan@scu.edu.cn;liwei.zheng@scu.edu.cn
摘要:
口腔遗传病与罕见病因患病率低、表现复杂,其精准诊疗是口腔医学领域的“小众但关键”难题。近年来,人工智能技术正在重塑传统医疗诊治范式,其应用为突破该领域困境提供了创新性解决方案,如辅助疾病影像学、面部特征分析与基因突变筛查,提高诊断的准确率与时效性,创新手术导航路径与个体化治疗策略等,但临床转化仍需跨越多重障碍。本文就近年人工智能在口腔遗传病与罕见病精准诊疗中的研究进展进行总结,讨论其现状、优势与挑战,为进一步临床研究与应用提供依据。
中图分类号:
张洁心, 周媛, 郑黎薇. 人工智能在口腔遗传病与罕见病精准诊疗中的应用研究进展[J]. 口腔医学, 2026, 46(1): 35-40.
ZHANG Jiexin, ZHOU Yuan, ZHENG Liwei. Research progress of precision diagnosis and treatment of oral genetic and rare diseases driven by artificial intelligence[J]. Stomatology, 2026, 46(1): 35-40.
| [1] |
Arno PS, Bonuck K, Davis M. Rare diseases, drug development, and AIDS: The impact of the orphan drug act[J]. Milbank Q, 1995, 73(2): 231.
doi: 10.2307/3350258 |
| [2] | 段小红. 我国口腔遗传病与罕见病的诊治现状与思考[J]. 实用口腔医学杂志, 2023, 39(1): 5-10. |
| [3] | 弓孟春, 焦塬石, 马武仁, 等. 人工智能支持罕见病诊疗的研究进展[J]. 罕见病研究, 2022, 1(2): 101-109. |
| [4] | 郑雪妮, 段小红. 口腔罕见病与遗传病生物样本库的建立与完善[J]. 实用口腔医学杂志, 2016, 32(6): 773-777. |
| [5] | 段小红. 口腔罕见病名录(第一版)[J]. 中华口腔医学杂志, 2020, 55(7): 494-500. |
| [6] | 段小红. 口腔罕见病名录(第二版)[J]. 中华口腔医学杂志, 2025, 60(9): 959-970. |
| [7] | 林慧平, 徐婷, 林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145. |
| [8] |
Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry[J]. J Dent Res, 2021, 100(3): 232-244.
doi: 10.1177/0022034520969115 |
| [9] |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
doi: 10.1038/s41568-018-0016-5 pmid: 29777175 |
| [10] |
Lee JH, Kim DH, Jeong SN, et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm[J]. J Dent, 2018, 77: 106-111.
doi: 10.1016/j.jdent.2018.07.015 |
| [11] |
Guo Z, Guo N, Gong K, et al. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network[J]. Phys Med Biol, 2019, 64(20): 205015.
doi: 10.1088/1361-6560/ab440d |
| [12] |
Topol EJ. High-performance medicine: The convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1): 44-56.
doi: 10.1038/s41591-018-0300-7 pmid: 30617339 |
| [13] |
Hirsch MC, Ronicke S, Krusche M, et al. Rare diseases 2030: How augmented AI will support diagnosis and treatment of rare diseases in the future[J]. Ann Rheum Dis, 2020, 79(6): 740-743.
doi: 10.1136/annrheumdis-2020-217125 pmid: 32209541 |
| [14] |
Alirezaie N, Kernohan KD, Hartley T, et al. ClinPred: Prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants[J]. Am J Hum Genet, 2018, 103(4): 474-483.
doi: S0002-9297(18)30271-4 pmid: 30220433 |
| [15] |
Bosio M, Drechsel O, Rahman R, et al. eDiVA: Classification and prioritization of pathogenic variants for clinical diagnostics[J]. Hum Mutat, 2019, 40(7): 865-878.
doi: 10.1002/humu.2019.40.issue-7 |
| [16] |
Brasil S, Pascoal C, Francisco R, et al. Artificial intelligence(AI)in rare diseases: Is the future brighter?[J]. Genes, 2019, 10(12): 978.
doi: 10.3390/genes10120978 |
| [17] |
Wang YR, Li E, Cherry SR, et al. Total-body PET kinetic modeling and potential opportunities using deep learning[J]. PET Clin, 2021, 16(4): 613-625.
doi: 10.1016/j.cpet.2021.06.009 pmid: 34353745 |
| [18] | Lee YS, Krishnan A, Oughtred R, et al. A computational framework for genome-wide characterization of the human disease landscape[J]. Cell Syst, 2019, 8(2): 152-162. e6. |
| [19] |
Huang KX, Chandak P, Wang QW, et al. A foundation model for clinician-centered drug repurposing[J]. Nat Med, 2024, 30(12): 3601-3613.
doi: 10.1038/s41591-024-03233-x pmid: 39322717 |
| [20] |
Blasiak A, Tan LWJ, Chong LM, et al. Personalized dose selec-tion for the first Waldenström macroglobulinemia patient on the PRECISE CURATE. AI trial[J]. NPJ Digit Med, 2024, 7: 223.
doi: 10.1038/s41746-024-01195-5 pmid: 39191913 |
| [21] |
Ragodos R, Wang T, Padilla C, et al. Dental anomaly detection using intraoral photosdeep learning[J]. Sci Rep, 2022, 12: 11577.
doi: 10.1038/s41598-022-15788-1 pmid: 35804050 |
| [22] |
Okazaki S, Mine Y, Iwamoto Y, et al. Analysis of the feasibility of using deep learning for multiclass classification of dental anomalies on panoramic radiographs[J]. Dent Mater J, 2022, 41(6): 889-895.
doi: 10.4012/dmj.2022-098 |
| [23] |
Uyar T, Uyar DS. Assessment of using transfer learning with different classifiers in hypodontia diagnosis[J]. BMC Oral Health, 2025, 25(1): 68.
doi: 10.1186/s12903-025-05451-2 pmid: 39810112 |
| [24] |
Wang SW, Liu JL, Li SH, et al. ResNet-Transformer deep learning model-aided detection of dens evaginatus[J]. Int J Paed Dentistry, 2025, 35(4): 708-716.
doi: 10.1111/ipd.v35.4 |
| [25] |
D’Souza A, Ryan E, Sidransky E. Facial features of lysosomal storage disorders[J]. Expert Rev Endocrinol Metab, 2022, 17(6): 467-474.
doi: 10.1080/17446651.2022.2144229 |
| [26] |
Hennocq Q, Willems M, Amiel J, et al. Next generation phenotyping for diagnosis and phenotype-genotype correlations in kabuki syndrome[J]. Sci Rep, 2024, 14(1): 2330.
doi: 10.1038/s41598-024-52691-3 pmid: 38282012 |
| [27] |
Marwaha A, Costain G, Cytrynbaum C, et al. The utility of DNA methylation signatures in directing genome sequencing workflow:Kabuki syndrome and CDK13-related disorder[J]. Am J Med Genet A, 2022, 188(5): 1368-1375.
doi: 10.1002/ajmg.a.v188.5 |
| [28] |
Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning[J]. Nat Med, 2019, 25(1): 60-64.
doi: 10.1038/s41591-018-0279-0 pmid: 30617323 |
| [29] |
Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome[J]. Genet Med, 2010, 12(7): 385-395.
doi: 10.1097/GIM.0b013e3181def138 pmid: 20445456 |
| [30] |
de Santana Sarmento DJ, de Araújo TK, de Queiroz Tavares Borges Mesquita G, et al. Relationship between occlusal features and enzyme replacement therapy in patients with mucopolysaccharidoses[J]. J Oral Maxillofac Surg, 2018, 76(4): 785-792.
doi: 10.1016/j.joms.2017.10.003 |
| [31] |
Gomez DA, Bird LM, Fleischer N, et al. Differentiating molecular etiologies of Angelman syndrome through facial phenotyping using deep learning[J]. Am J Med Genetics Pt A, 2020, 182(9): 2021-2026.
doi: 10.1002/ajmg.a.v182.9 |
| [32] |
Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: Understanding genetic and environmental influences[J]. Nat Rev Genet, 2011, 12(3): 167-178.
doi: 10.1038/nrg2933 pmid: 21331089 |
| [33] | Mossey PA, Modell B. Epidemiology of oral clefts 2012: An international perspective[J]. Frontiers Oral Biol, 2012: 1-18. |
| [34] |
Zhang SJ, Meng PQ, Zhang JN, et al. Machine learning models for genetic risk assessment of infants with non-syndromic orofacial cleft[J]. Genom Proteom Bioinform, 2018, 16(5): 354-364.
doi: 10.1016/j.gpb.2018.07.005 |
| [35] |
Alhazmi N, Alaqla A, Almuzzaini B, et al. What could be the role of genetic tests and machine learning of AXIN2 variant dominance in non-syndromic hypodontia?A case-control study in orthodontically treated patients[J]. Prog Orthod, 2024, 25(1): 31.
doi: 10.1186/s40510-024-00532-4 pmid: 39183201 |
| [36] |
Pober BR. Williams-beuren syndrome[J]. N Engl J Med, 2010, 362(3): 239-252.
doi: 10.1056/NEJMra0903074 |
| [37] |
Torres CP, Valadares G, Martins MI, et al. Oral findings and dental treatment in a child with williams-beuren syndrome[J]. Braz Dent J, 2015, 26(3): 312-316.
doi: 10.1590/0103-6440201300335 pmid: 26200160 |
| [38] | Porras AR, Rosenbaum K, Tor-Diez C, et al. Development and evaluation of a machine learning-based point-of-care screening tool for genetic syndromes in children: A multinational retrospective study[J]. Lancet Digit Health, 2021, 3(10): e635-e643. |
| [39] | 罗恩, 石冰, 陈谦明, 等. 罕见病的牙颌面临床表现与治疗[J]. 华西口腔医学杂志, 2019, 37(2): 130-142. |
| [40] |
Yu MK, Ma JZ, Ono K, et al. DDOT: A Swiss army knife for investigating data-driven biological ontologies[J]. Cell Syst, 2019, 8(3): 267-273. e3.
doi: S2405-4712(19)30037-7 pmid: 30878356 |
| [41] |
Esteban-Medina M, Peña-Chilet M, Loucera C, et al. Exploring the druggable space around the Fanconi Anemia pathway using machine learning and mechanistic models[J]. BMC Bioinform, 2019, 20(1): 370.
doi: 10.1186/s12859-019-2969-0 |
| [42] | Lewandrowski KU, Muraleedharan N, Eddy SA, et al. Reliability analysis of deep learning algorithms for reporting of routine lumbar MRI scans[J]. Int J Spine Surg, 2020, 14(s3): 7132. |
| [43] |
Miranda F, Choudhari V, Barone S, et al. Interpretable artificial intelligence for classification of alveolar bone defect in patients with cleft lip and palate[J]. Sci Rep, 2023, 13: 15861.
doi: 10.1038/s41598-023-43125-7 |
| [44] |
Sayadi LR, Hamdan US, Zhangli QL, et al. Harnessing the power of artificial intelligence to teach cleft lip surgery[J]. Plast Reconstr Surg Glob Open, 2022, 10(7): e4451.
doi: 10.1097/GOX.0000000000004451 pmid: 35924000 |
| [45] | Udayakumaran S, Krishnadas A, Subash P. Robot-assisted frontofacial correction in very young children with craniofacial dysostosis syndromes:A technical note and early functional outcome[J]. Neurosurg Focus, 2022, 52(1): E16. |
| [46] |
Liu XQ, Zhang ZW, Han WQ, et al. Efficacy of navigation system-assisted distraction osteogenesis for hemifacial microsomia based on artificial intelligence for 3 to 18 years old: Study protocol for a randomized controlled single-blind trial[J]. Trials, 2024, 25(1): 42.
doi: 10.1186/s13063-023-07809-9 |
| [47] |
Zhang ZW, Kim BS, Han WQ, et al. Preliminary study of the accuracy and safety of robot-assisted mandibular distraction osteogenesis with electromagnetic navigation in hemifacial microsomia using rabbit models[J]. Sci Rep, 2022, 12: 19572.
doi: 10.1038/s41598-022-21893-y pmid: 36379999 |
| [48] | Kim E, Hwang JJ, Cho BH, et al. Classification of presence of missing teeth in each quadrant using deep learning artificial intelligence on panoramic radiographs of pediatric patients[J]. J Clin Pediat Dent, 2024, 48(3): 76-85. |
| [49] |
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database[J]. NPJ Digit Med, 2020, 3: 118.
doi: 10.1038/s41746-020-00324-0 pmid: 32984550 |
| [50] |
Waikel RL, Othman AA, Patel T, et al. Recognition of genetic conditions after learning with images created using generative artificial intelligence[J]. JAMA Netw Open, 2024, 7(3): e242609.
doi: 10.1001/jamanetworkopen.2024.2609 |
| [1] | 袁鑫玺, 夏也康, 王涵, 胡建, 刘来奎, 梁薇薇. 机器学习在牙列缺损修复中的应用[J]. 口腔医学, 2025, 45(9): 707-712. |
| [2] | 张金萍, 虞仙, 陈熠名, 王泽辉, 陶瑜, 韦一, 李碧榕, 朱炳震, 张娟. 基于卷积神经网络的下颌第三磨牙和下颌神经管关系诊断[J]. 口腔医学, 2025, 45(8): 596-602. |
| [3] | 刘飞, 张久楼, 金若帆, 张楠, 周薇娜. 基于深度学习方法建立颞下颌关节核磁共振影像的自动分割模型[J]. 口腔医学, 2025, 45(6): 445-452. |
| [4] | 贺梦柯, 鲁嘉韦, 段晖, 罗礼君. 人工智能技术在牙周炎影像诊断中的研究进展[J]. 口腔医学, 2025, 45(6): 460-464. |
| [5] | 黄淑慧, 朱珠, 汪云毅, 徐雨悦, 李竞, 俞刚, 张峰. 人工智能在颌面部骨折诊疗中的应用进展[J]. 口腔医学, 2025, 45(5): 386-393. |
| [6] | 李嘉宁, 王胜朝, 周子超, 张倩霞, 蒋文凯. CBCT结合数字化技术及人工智能在牙体牙髓中的应用进展[J]. 口腔医学, 2025, 45(4): 296-300. |
| [7] | 陈媛媛, 章旺茹, 李志萍, 孟箭. 基于多模态医学影像融合的数字化技术在颌面部复杂肿瘤治疗中的研究进展[J]. 口腔医学, 2025, 45(10): 789-794. |
| [8] | 王悦, 厉杭芸, 汤婉怡, 吴珺华. 机器学习在牙体缺损修复中的应用[J]. 口腔医学, 2024, 44(7): 551-550. |
| [9] | 孙春生, 戴修斌, 周曼婷, 景秋平, 张驰, 阳胜军, 王东苗. 基于注意力机制的深度学习网络自动识别垂直位下颌第三磨牙牙根数目的研究[J]. 口腔医学, 2024, 44(11): 831-836. |
| [10] | 杨振泽, 林军. 人工智能在正畸正颌联合治疗的应用及展望[J]. 口腔医学, 2023, 43(8): 747-751. |
| [11] | 于海洋, 张呐, 贺子敬, 方婷露, 韩立. 弱人工智能数字化时代下的医技关系[J]. 口腔医学, 2023, 43(7): 577-583. |
| [12] | 王芷凡, 戴修斌, 周炎锜, 冒添逸, 黄虹, 宋洪丞, 王东苗. 轻量型单步深度学习网络自动识别下颌智齿牙根与下颌管位置关系的研究[J]. 口腔医学, 2023, 43(6): 534-539. |
| [13] | 顾徐嘉,孟箭,李志萍. 计算机三维仿真设计技术在下颌骨复杂骨折治疗中的研究进展[J]. 口腔医学, 2023, 43(4): 380-384. |
| [14] | 樊蓉, 常新. 手术优先模式治疗骨性牙颌面畸形的研究进展[J]. 口腔医学, 2022, 42(5): 471-475. |
| [15] | 刘煜, 赵彬. 口腔颌面锥形束CT金属伪影的研究进展[J]. 口腔医学, 2022, 42(2): 165-169. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
苏公网安备32010602011670号