口腔医学 ›› 2024, Vol. 44 ›› Issue (8): 617-623.doi: 10.13591/j.cnki.kqyx.2024.08.011
收稿日期:
2023-11-07
出版日期:
2024-08-28
发布日期:
2024-08-06
通讯作者:
王慧明 E-mail:基金资助:
LIN Lining,SUN Mouyuan,WANG Huiming()
Received:
2023-11-07
Online:
2024-08-28
Published:
2024-08-06
摘要:
因外伤、肿瘤等原因引起的口腔颌面部周围神经损伤日益常见,其造成的感觉与运动功能障碍严重困扰着患者的生活。损伤后的周围神经虽具有一定的自我修复能力,但受限于损伤程度以及机体自身状况,大间距周围神经缺损仍需手术干预,且术后患者神经功能的恢复情况并不理想,这与损伤后局部存在的炎性微环境密切关系。褪黑素作为体内松果体合成的化合物,具有良好的抗炎作用,并能调节周围神经再生过程中的关键细胞的行为与命运,在神经组织工程中具有良好的应用前景。本文综述了褪黑素的合成与代谢过程,并对其促进周围神经再生的作用机制、应用现状以及在颌面部疾病中的潜在应用进行了总结,为周围神经缺损修复提供了一种新的思路。
中图分类号:
林立宁, 孙谋远, 王慧明. 褪黑素在周围神经损伤修复中的应用[J]. 口腔医学, 2024, 44(8): 617-623.
LIN Lining, SUN Mouyuan, WANG Huiming. Application of melatonin in peripheral nerve injury repair[J]. Stomatology, 2024, 44(8): 617-623.
[1] | Hewson DW, Bedforth NM, Hardman JG. Peripheral nerve injury arising in anaesthesia practice[J]. Anaesthesia, 2018, 73(Suppl 1): 51-60. |
[2] | Renton T. Prevention of iatrogenic inferior alveolar nerve injuries in relation to dental procedures[J]. Dent Update, 2010, 37(6): 350-352, 354-356, 358-360. |
[3] | Liu ZG, Wang B, Yang LH. A modified method for minimizing damage to the marginal mandibular branch(MMB)during partial superficial parotidectomy(PSP): A retrospective study[J]. J Craniomaxillofac Surg, 2022, 50(8): 637-642. |
[4] | Troux C, Trandafir C, Zugun C, et al. Great auricular nerve conservation and parotidectomy for tumor[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2023, 140(3): 131-134. |
[5] |
Wojtkiewicz DM, Saunders J, Domeshek L, et al. Social impact of peripheral nerve injuries[J]. Hand, 2015, 10(2): 161-167.
doi: 10.1007/s11552-014-9692-0 pmid: 26034424 |
[6] |
Yildiran H, Macit MS, Özata Uyar G. New approach to peripheral nerve injury: Nutritional therapy[J]. Nutr Neurosci, 2020, 23(10): 744-755.
doi: 10.1080/1028415X.2018.1554322 pmid: 30526417 |
[7] |
Isaacs J, Browne T. Overcoming short gaps in peripheral nerve repair: Conduits and human acellular nerve allograft[J]. Hand, 2014, 9(2): 131-137.
doi: 10.1007/s11552-014-9601-6 pmid: 24839412 |
[8] | Matsuyama T, MacKay M, Midha R. Peripheral nerve repair and grafting techniques: A review[J]. Neurol Med Chir, 2000, 40(4): 187-199. |
[9] |
Martin SL, Reid AJ, Verkhratsky A, et al. Gene expression changes in dorsal root Ganglia following peripheral nerve injury: Roles in inflammation, cell death and nociception[J]. Neural Regen Res, 2019, 14(6): 939-947.
doi: 10.4103/1673-5374.250566 pmid: 30761997 |
[10] | Kalinski AL, Yoon C, Huffman LD, et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement[J]. ELife, 2020, 9: e60223. |
[11] | Zhou HY, Yan Y, Ee XP, et al. Imaging of radicals following injury or acute stress in peripheral nerves with activatable fluorescent probes[J]. Free Radic Biol Med, 2016, 101: 85-92. |
[12] | Li XL, Guan YJ, Li CC, et al. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury[J]. Stem Cell Res Ther, 2022, 13(1): 18. |
[13] |
Mauriz JL, Collado PS, Veneroso C, et al. A review of the molecular aspects of melatonin's anti-inflammatory actions: Recent insights and new perspectives[J]. J Pineal Res, 2013, 54(1): 1-14.
doi: 10.1111/j.1600-079X.2012.01014.x pmid: 22725668 |
[14] | Tan DX, Manchester LC, Esteban-Zubero E, et al. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism[J]. Molecules, 2015, 20(10): 18886-18906. |
[15] | Szewczuk LM, Tarrant MK, Sample V, et al. Analysis of serotonin N-acetyltransferase regulation in vitro and in live cells using protein semisynthesis[J]. Biochemistry, 2008, 47(39): 10407-10419. |
[16] | Reiter RJ. Melatonin: The chemical expression of darkness[J]. Mol Cell Endocrinol, 1991, 79(1/2/3): C153-C158. |
[17] |
Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: Under promises but over delivers[J]. J Pineal Res, 2016, 61(3): 253-278.
doi: 10.1111/jpi.12360 pmid: 27500468 |
[18] |
Venegas C, García JA, Escames G, et al. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations[J]. J Pineal Res, 2012, 52(2): 217-227.
doi: 10.1111/j.1600-079X.2011.00931.x pmid: 21884551 |
[19] |
Ma XC, Idle JR, Krausz KW, et al. Metabolism of melatonin by human cytochromes p450[J]. Drug Metab Dispos, 2005, 33(4): 489-494.
pmid: 15616152 |
[20] |
Noda Y, Mori A, Liburdy R, et al. Melatonin and its precursors scavenge nitric oxide[J]. J Pineal Res, 1999, 27(3): 159-163.
pmid: 10535765 |
[21] | Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection[J]. J Pineal Res, 2018, 65(1): e12514. |
[22] |
García JJ, López-Pingarrón L, Almeida-Souza P, et al. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review[J]. J Pineal Res, 2014, 56(3): 225-237.
doi: 10.1111/jpi.12128 pmid: 24571249 |
[23] |
Pandi-Perumal SR, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways[J]. Prog Neurobiol, 2008, 85(3): 335-353.
doi: 10.1016/j.pneurobio.2008.04.001 pmid: 18571301 |
[24] | Hardeland R. Melatonin: Signaling mechanisms of a pleiotropic agent[J]. Bio Factors, 2009, 35(2): 183-192. |
[25] |
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves[J]. Glia, 2019, 67(3): 421-437.
doi: 10.1002/glia.23532 pmid: 30632639 |
[26] |
Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves[J]. J Cell Biol, 2015, 210(1): 153-168.
doi: 10.1083/jcb.201503019 pmid: 26150392 |
[27] |
Chen PW, Piao XH, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury[J]. Acta Neuropathol, 2015, 130(5): 605-618.
doi: 10.1007/s00401-015-1482-4 pmid: 26419777 |
[28] |
Mokarram N, Merchant A, Mukhatyar V, et al. Effect of modulating macrophage phenotype on peripheral nerve repair[J]. Biomaterials, 2012, 33(34): 8793-8801.
doi: 10.1016/j.biomaterials.2012.08.050 pmid: 22979988 |
[29] |
Zhang Q, Chen JL, Feng Y, et al. Electroactive scaffolds of biodegradable polyurethane/polydopamine-functionalized graphene oxide regulating the inflammatory response and revitalizing the axonal growth cone for peripheral nerve regeneration[J]. J Mater Chem B, 2023, 11(27): 6308-6318.
doi: 10.1039/d3tb00837a pmid: 37326438 |
[30] | Cattin AL, Burden JJ, Van Emmenis L, et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves[J]. Cell, 2015, 162(5): 1127-1139. |
[31] | Chang HM, Liu CH, Hsu WM, et al. Proliferative effects of melatonin on Schwann cells: Implication for nerve regeneration following peripheral nerve injury[J]. J Pineal Res, 2014, 56(3): 322-332. |
[32] | Tiong YL, Ng KY, Koh RY, et al. Melatonin promotes Schwann cell dedifferentiation and proliferation through the Ras/Raf/ERK and MAPK pathways, and glial cell-derived neurotrophic factor expression[J]. Exp Ther Med, 2020, 20(5): 16. |
[33] | Govindasamy N, Chung Chok K, Ying Ng P, et al. Melatonin induced schwann cell proliferation and dedifferentiation through NF-κB, FAK-dependent but src-independent pathways[J]. Rep Biochem Mol Biol, 2022, 11(1): 63-73. |
[34] |
Kano F, Matsubara K, Ueda M, et al. Secreted ectodomain of sialic acid-binding ig-like lectin-9 and monocyte chemoattractant protein-1 synergistically regenerate transected rat peripheral nerves by altering macrophage polarity[J]. Stem Cells, 2017, 35(3): 641-653.
doi: 10.1002/stem.2534 pmid: 27862629 |
[35] | Xia YY, Chen SY, Zeng SJ, et al. Melatonin in macrophage biology: Current understanding and future perspectives[J]. J Pineal Res, 2019, 66(2): e12547. |
[36] | Stazi M, Negro S, Megighian A, et al. Melatonin promotes regeneration of injured motor axons via MT1 receptors[J]. J Pineal Res, 2021, 70(1): e12695. |
[37] | Liu CH, Chang HM, Yang YS, et al. Melatonin promotes nerve regeneration following end-to-side neurorrhaphy by accelerating cytoskeletal remodeling via the melatonin receptor-dependent pathway[J]. Neuroscience, 2020, 429: 282-292. |
[38] |
Özkan Y, Turgut M, Turan Y, et al. Comparison of the effects of electroacupuncture and melatonin on nerve regeneration in experimentally nerve-damaged rats[J]. J Acupunct Meridian Stud, 2021, 14(5): 176-182.
doi: 10.51507/j.jams.2021.14.5.176 pmid: 35770586 |
[39] | Li XG, Fu J, Zhou HY, et al. The effects of melatonin in the treatment of acute brachial plexus compression injury in rats[J]. Front Neurol, 2023, 14: 1111101. |
[40] |
Tuna Edizer D, Dönmez Z, Gül M, et al. Effects of melatonin and dexamethasone on facial nerve neurorrhaphy[J]. J Int Adv Otol, 2019, 15(1): 43-50.
doi: 10.5152/iao.2018.3273 pmid: 30541731 |
[41] |
Sayan HL, Ozacmak VH, Ozen OA, et al. Beneficial effects of melatonin on reperfusion injury in rat sciatic nerve[J]. J Pineal Res, 2004, 37(3): 143-148.
pmid: 15357657 |
[42] | Shabeeb D, Musa A, Keshavarz M, et al. Melatonin ameliorates radiation-induced sciatic nerve injury[J]. Lett Drug Des Discov, 2019, 17: 21-30. |
[43] | Cosovic E, Kapic D, Lujinovic A, et al. Time-dependent proregenerative effects of exogenous melatonin on the transected sciatic nerve[J]. Int J Morphol, 2023, 41(1): 188-194. |
[44] | Negro S, Stazi M, Rigoni M, et al. Neurotransmission recovery by melatonin measured by CMAP[J]. Methods Mol Biol, 2022: 413-423. |
[45] | Zencirci SG, Bilgin MD, Yaraneri H. Electrophysiological and theoretical analysis of melatonin in peripheral nerve crush injury[J]. J Neurosci Methods, 2010, 191(2): 277-282. |
[46] |
Yazar U, Çakır E, Boz C, et al. Electrophysiological, functional and histopathological assessments of high dose melatonin on regeneration after blunt sciatic nerve injury[J]. J Clin Neurosci, 2020, 72: 370-377.
doi: S0967-5868(19)31841-7 pmid: 31952974 |
[47] | Kaya Y, Sarıkcıoğlu L, Aslan M, et al. Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: A combined study using functional, electrophysiological, biochemical, and electron microscopic analyses[J]. Childs Nerv Syst, 2013, 29(3): 389-401. |
[48] |
Turgut M, Oktem G, Uysal A, et al. Immunohistochemical profile of transforming growth factor-beta1 and basic fibroblast growth factor in sciatic nerve anastomosis following pinealectomy and exogenous melatonin administration in rats[J]. J Clin Neurosci, 2006, 13(7): 753-758.
pmid: 16831553 |
[49] | Shokouhi G, Tubbs RS, Shoja MM, et al. Neuroprotective effects of high-dose vs low-dose melatonin after blunt sciatic nerve injury[J]. Childs Nerv Syst, 2008, 24(1): 111-117. |
[50] | Rogério F, de Souza Queiroz L, Teixeira SA, et al. Neuroprotective action of melatonin on neonatal rat motoneurons after sciatic nerve transection[J]. Brain Res, 2002, 926(1/2): 33-41. |
[51] |
Atik B, Erkutlu I, Tercan M, et al. The effects of exogenous melatonin on peripheral nerve regeneration and collagen formation in rats[J]. J Surg Res, 2011, 166(2): 330-336.
doi: 10.1016/j.jss.2009.06.002 pmid: 20006352 |
[52] | Händel MN, Andersen HK, Ussing A, et al. The short-term and long-term adverse effects of melatonin treatment in children and adolescents: A systematic review and GRADE assessment[J]. E Clinical Medicine, 2023, 61: 102083. |
[53] |
Foley HM, Steel AE. Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence[J]. Complement Ther Med, 2019, 42: 65-81.
doi: S0965-2299(18)30937-3 pmid: 30670284 |
[54] |
Andersen LP, Gögenur I, Rosenberg J, et al. Pharmacokinetics of melatonin: The missing link in clinical efficacy?[J]. Clin Pharmacokinet, 2016, 55(9): 1027-1030.
doi: 10.1007/s40262-016-0386-3 pmid: 27000757 |
[55] |
Onger ME, Kaplan S, Deniz ÖG, et al. Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve[J]. J Chem Neuroanat, 2017, 81: 34-41.
doi: S0891-0618(16)30152-1 pmid: 28163216 |
[56] |
Kaplan S, Pişkin A, Ayyildiz M, et al. The effect of melatonin and platelet gel on sciatic nerve repair: An electrophysiological and stereological study[J]. Microsurgery, 2011, 31(4): 306-313.
doi: 10.1002/micr.20876 pmid: 21520268 |
[57] | Chen TK, Jiang HM, Li X, et al. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering[J]. Int J Biol Macromol, 2022, 197: 103-110. |
[58] | Qian Y, Han QX, Zhao XT, et al. 3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration[J]. J Pineal Res, 2018, 65(4): e12516. |
[59] | Wang YH, Pan J, Wang DR, et al. The use of stem cells in neural regeneration: A review of current opinion[J]. Curr Stem Cell Res Ther, 2018, 13(7): 608-617. |
[60] | Luo LH, Gan L, Liu YM, et al. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect[J]. Biochem Biophys Res Commun, 2015, 457(4): 507-513. |
[61] |
Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, et al. Polyurethane/gelatin nanofibrils neural guidance conduit containing platelet-rich plasma and melatonin for transplantation of schwann cells[J]. Cell Mol Neurobiol, 2018, 38(3): 703-713.
doi: 10.1007/s10571-017-0535-8 pmid: 28823058 |
[62] | Jiang LF, Jones S, Jia XF. Stem cell transplantation for peripheral nerve regeneration: Current options and opportunities[J]. Int J Mol Sci, 2017, 18(1): 94. |
[63] | Zhang ZQ, Zhang MY, Zhang ZX, et al. ADSCs combined with melatonin promote peripheral nerve regeneration through autophagy[J]. Int J Endocrinol, 2022, 2022: 5861553. |
[64] |
Zhang JC, Ge HG, Li J, et al. Effective regeneration of rat sciatic nerve using nanofibrous scaffolds containing rat ADSCs with controlled release of rhNGF and melatonin molecules for the treatment of peripheral injury model[J]. Regen Ther, 2023, 24: 180-189.
doi: 10.1016/j.reth.2023.06.009 pmid: 37427370 |
[65] | Chen X, Ge XM, Qian Y, et al. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4 magnetic nanoparticles for peripheral nerve regeneration[J]. Adv Funct Materials, 2020, 30(38): 2004537. |
[66] | Jiang HQ, Wang X, Li X, et al. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction[J]. Mater Today Bio, 2022, 13: 100211. |
[67] |
Condie D, Tolkachjov SN. Facial nerve injury and repair: A practical review for cutaneous surgery[J]. Dermatol Surg, 2019, 45(3): 340-357.
doi: 10.1097/DSS.0000000000001773 pmid: 30640780 |
[68] |
Gordin E, Lee TS, Ducic Y, et al. Facial nerve trauma: Evaluation and considerations in management[J]. Craniomaxillofac Trauma Reconstr, 2015, 8(1): 1-13.
doi: 10.1055/s-0034-1372522 pmid: 25709748 |
[69] | Kaleem A, Amailuk P, Hatoum H, et al. The trigeminal nerve injury[J]. Oral Maxillofac Surg Clin North Am, 2020, 32(4): 675-687. |
[70] | Le Donne M, Jouan R, Bourlet J, et al. Inferior alveolar nerve allogenic repair following mandibulectomy: A systematic review[J]. J Stomatol Oral Maxillofac Surg, 2022, 123(2): 233-238. |
[71] | Miranda-Riestra A, Estrada-Reyes R, Torres-Sanchez ED, et al. Melatonin: A neurotrophic factor?[J]. Molecules, 2022, 27(22): 7742. |
[72] | Zolfagharzadeh V, Ai J, Soltani H, et al. Sustain release of loaded insulin within biomimetic hydrogel microsphere for sciatic tissue engineering in vivo[J]. Int J Biol Macromol, 2023, 225: 687-700. |
[73] | Chuffa LGA, Seiva FRF, Novais AA, et al. Melatonin-loaded nanocarriers: New horizons for therapeutic applications[J]. Molecules, 2021, 26(12): 3562. |
[74] | Solomevich SO, Oranges CM, Kalbermatten DF, et al. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries[J]. Carbohydr Polym, 2023, 315: 120934. |
[75] | Kantrong N, Jit-Armart P, Arayatrakoollikit U. Melatonin antagonizes lipopolysaccharide-induced pulpal fibroblast responses[J]. BMC Oral Health, 2020, 20(1): 91. |
[76] | Vaseenon S, Chattipakorn N, Chattipakorn SC. Effects of melatonin in wound healing of dental pulp and periodontium: Evidence from in vitro, in vivo and clinical studies[J]. Arch Oral Biol, 2021, 123: 105037. |
[77] | Yi HX, Lu WX, Liu F, et al. ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer[J]. J Nanobiotechnology, 2021, 19(1): 134. |
[78] | Ding HT, Tan P, Fu SQ, et al. Preparation and application of pH-responsive drug delivery systems[J]. J Control Release, 2022, 348: 206-238. |
[1] | 侯政瑶, 王可心, 王庆梅, 杨小琛, 宋凯. 口腔HPV感染的研究现状[J]. 口腔医学, 2024, 44(1): 63-68. |
[2] | 蒋镇泽, 邹明媛, 弓国梁, 林新平. 第二磨牙在不同情况下对改良C型腭板远中移动上颌磨牙的影响——三维有限元分析[J]. 口腔医学, 2023, 43(9): 808-813. |
[3] | 陈诺,卫彦. 牙本质敏感症治疗材料的研究进展[J]. 口腔医学, 2023, 43(5): 385-392. |
[4] | 孙乐章,王琪. 高糖水平下牙周组织的形态与免疫特征[J]. 口腔医学, 2023, 43(2): 153-158. |
[5] | 陈敬儒,李凤丹,江银华. 光生物调节疗法治疗放射性口腔黏膜炎作用机制研究进展[J]. 口腔医学, 2023, 43(12): 1134-1139. |
[6] | 张天玉,江潞. 累及口腔的IgG4相关疾病研究进展[J]. 口腔医学, 2023, 43(12): 1106-1111. |
[7] | 李凤丹, 陈敬儒, 江银华. 牙周炎与糖尿病性视网膜病变相关性的研究进展[J]. 口腔医学, 2023, 43(10): 939-944. |
[8] | 张校晨, 孙唯夫, 方世殊, 秦文, 金作林. m6A甲基化修饰参与成骨分化调控的研究进展[J]. 口腔医学, 2022, 42(7): 655-658. |
[9] | 姚丽红, 徐婉秋, 许晓航, 薛冰, 席花蕾, 王秀梅. 神经调节素-1在神经损伤修复中的作用机制及研究现状[J]. 口腔医学, 2022, 42(6): 567-570. |
[10] | 董峻池, 郑慧玲, 卫羽雯, 马骞. 生物活性玻璃的抗菌机制及其影响因素[J]. 口腔医学, 2022, 42(6): 551-556. |
[11] | 张旭东, 杨雪莲, 刘夏青, 马宇峰. Er:YAG激光应用于口腔硬组织的研究进展[J]. 口腔医学, 2022, 42(4): 381-384. |
[12] | 张成, 芦笛, 刘宗响, 王鹏来. 褪黑素在口腔种植治疗中的研究进展[J]. 口腔医学, 2022, 42(2): 184-187. |
[13] | 戴佳韵, 王姝婧, 林君彦, 田钰, 潘永初, 李丹丹. 低水平激光用于加速正畸牙齿移动的研究进展[J]. 口腔医学, 2022, 42(12): 1123-1128. |
[14] | 白雪, 高晋华, 任秀云. 牙周炎与不良妊娠结局相关关系的研究进展[J]. 口腔医学, 2022, 42(10): 932-937. |
[15] | 龚怡 吴泽钰 王琛 赵今. 赤芍的抑菌作用及其防治慢性牙周炎的机制研究[J]. , 2021, 41(5): 391-397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||