[1] |
Peres MA, MacPherson LMD, Weyant RJ, et al. Oral diseases: A global public health challenge[J]. Lancet, 2019, 394(10194): 249-260.
doi: S0140-6736(19)31146-8
pmid: 31327369
|
[2] |
Pruksawan S, Samitsu S, Fujii Y, et al. Toughening effect of rodlike cellulose nanocrystals in epoxy adhesive[J]. ACS Appl Polym Mater, 2020, 2(3): 1234-1243.
|
[3] |
Chen YC, Zhang H, Zhu ZD, et al. High-value utilization of hydroxymethylated lignin in polyurethane adhesives[J]. Int J Biol Macromol, 2020, 152: 775-785.
doi: S0141-8130(20)30522-5
pmid: 32119943
|
[4] |
Li J, Celiz AD, Yang J, et al. Tough adhesives for diverse wet surfaces[J]. Science, 2017, 357(6349): 378-381.
doi: 10.1126/science.aah6362
pmid: 28751604
|
[5] |
Stuart-Fox D, Ng L, Elgar MA, et al. Bio-informed materials: Three guiding principles for innovation informed by biology[J]. Nat Rev Mater, 2023, 8: 565-567.
|
[6] |
Li WZ, Yang XY, Lai PX, et al. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies[J]. Smart Med, 2022, 1(1): e20220024.
|
[7] |
Cai C, Chen Z, Chen Y, et al. Mechanisms and applications of bioinspired underwater/wet adhesives[J]. Polym Sci, 2021, 59(23):2911-2945.
|
[8] |
Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430.
doi: 10.1126/science.1147241
pmid: 17947576
|
[9] |
Saiz-Poseu J, Mancebo-Aracil J, Nador F, et al. The chemistry behind catechol-based adhesion[J]. Angew Chem Int Ed, 2019, 58(3): 696-714.
doi: 10.1002/anie.201801063
pmid: 29573319
|
[10] |
Chen JS, Zeng HB. Designing bio-inspired wet adhesives through tunable molecular interactions[J]. J Colloid Interface Sci, 2023, 645: 591-606.
|
[11] |
Sivasundarampillai J, Youssef L, Priemel T, et al. A strong quick-release biointerface in mussels mediated by serotonergic Cilia-based adhesion[J]. Science, 2023, 382(6672): 829-834.
doi: 10.1126/science.adi7401
pmid: 37972188
|
[12] |
Hou Y, Li YZ, Li YQ, et al. Tuning water-resistant networks in mussel-inspired hydrogels for robust wet tissue and bioelectronic adhesion[J]. ACS Nano, 2023, 17(3): 2745-2760.
doi: 10.1021/acsnano.2c11053
pmid: 36734875
|
[13] |
Zhang C, Xiang L, Zhang JW, et al. Revisiting the adhesion mechanism of mussel-inspired chemistry[J]. Chem Sci, 2022, 13(6): 1698-1705.
doi: 10.1039/d1sc05512g
pmid: 35282627
|
[14] |
Lee HA, Park E, Lee H. Polydopamine and its derivative surface chemistry in material science: A focused review for studies at KAIST[J]. Adv Mater, 2020, 32(35): e1907505.
|
[15] |
Zhu JJ, Li YH, Xie WJ, et al. Low-swelling adhesive hydrogel with rapid hemostasis and potent anti-inflammatory capability for full-thickness oral mucosal defect repair[J]. ACS Appl Mater Interfaces, 2022, 14(48): 53575-53579.
|
[16] |
Hu SS, Pei XB, Duan LL, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery[J]. Nat Commun, 2021, 12(1): 1689.
doi: 10.1038/s41467-021-21989-5
pmid: 33727548
|
[17] |
Sun JW, Chen TT, Zhao BY, et al. Acceleration of oral wound healing under diabetes mellitus conditions using bioadhesive hydrogel[J]. ACS Appl Mater Interfaces, 2022, 15(1): 416-431.
|
[18] |
Lv YC, Cai FY, He YX, et al. Multi-crosslinked hydrogels with strong wet adhesion, self-healing, antibacterial property, reactive oxygen species scavenging activity, and on-demand removability for seawater-immersed wound healing[J]. Acta Biomater, 2023, 159: 95-110.
doi: 10.1016/j.actbio.2023.01.045
pmid: 36736644
|
[19] |
Chen YM, Li HY, Ni P, et al. Catechol hydrogel as wet tissue adhesive[J]. Progress in Chemistry, 2023, 35(4): 560-576.
doi: 10.7536/PC221016
|
[20] |
张慧, 曹文浩, 黄立, 等. 藤壶胶的特性及其作用机理[J]. 材料导报, 2014, 28(5): 108-111,127.
|
[21] |
Stewart RJ, Ransom TC, Hlady V. Natural underwater adhesives[J]. J Polym Sci B Polym Phys, 2011, 49(11): 757-771.
doi: 10.1002/polb.22256
pmid: 21643511
|
[22] |
Liu JN, Song JY, Zeng L, et al. An overview on the adhesion mechanisms of typical aquatic organisms and the applications of biomimetic adhesives in aquatic environments[J]. Int J Mol Sci, 2024, 25(14): 7994.
|
[23] |
So CR, Fears KP, Leary DH, et al. Sequence basis of barnacle cement nanostructure is defined by proteins with silk homology[J]. Sci Rep, 2016, 6: 36219.
doi: 10.1038/srep36219
pmid: 27824121
|
[24] |
Liu X, Jin H, Xu GC, et al. Bioactive peptides from barnacles and their potential for antifouling development[J]. Mar Drugs, 2023, 21(9): 480.
|
[25] |
Gan KS, Liang C, Bi XY, et al. Adhesive materials inspired by barnacle underwater adhesion: Biological principles and biomimetic designs[J]. Front Bioeng Biotechnol, 2022, 10: 870445.
|
[26] |
Xing JQ, Ding Y, Zheng XR, et al. Barnacle-Inspired robust and aesthetic Janus patch with instinctive wet adhesive for oral ulcer treatment[J]. Chem Eng J, 2022, 444: 136580.
|
[27] |
Zhao GY, Zhang AJ, Chen XY, et al. Barnacle inspired strategy combined with solvent exchange for enhancing wet adhesion of hydrogels to promote seawater-immersed wound healing[J]. Bioact Mater, 2024,41: 46-60.
|
[28] |
Kei K. Barnacle underwater attachment[M]. Biological Adhesives. Cham: Springer International Publishing, 2016: 153-176.
|
[29] |
Baik S, Kim DW, Park Y, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J]. Nature, 2017, 546(7658): 396-400.
|
[30] |
Chen YP, Meng JX, Gu Z, et al. Bioinspired multiscale wet adhesive surfaces: Structures and controlled adhesion[J]. Adv Funct Mater, 2020, 30(5): 1905287.
|
[31] |
Allard CAH, Kang G, Kim JJ, et al. Structural basis of sensory receptor evolution in Octopus[J]. Nature, 2023, 616(7956): 373-377.
|
[32] |
Frey ST, Tahidul Haque AM, Tutika R, et al. Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion[J]. Sci Adv, 2022, 8(28): eabq1905.
|
[33] |
Zhu Z, Wang J, Pei XB, et al. Blue-ringed Octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery[J]. Sci Adv, 2023, 9(25): eadh221.
|
[34] |
Luo Z, Klein Cerrejon D, Römer S, et al. Boosting systemic absorption of peptides with a bioinspired buccal-stretching patch[J]. Sci Transl Med, 2023, 15(715): eabq1887.
|
[35] |
Xi P, Cong Q, Xu J, et al. Design, experiment and adsorption mechanism analysis of bionic sucker based on Octopus sucker[J]. Proc Inst Mech Eng H, 2019, 233(12): 1250-1261.
|
[36] |
Baik S, Lee J, Jeon EJ, et al. Diving beetle-like miniaturized plungers with reversible, rapid biofluid capturing for machine learning-based care of skin disease[J]. Sci Adv, 2021, 7(25): eabf5695.
|
[37] |
Beckert M, Flammang BE, Nadler JH. Remora fish suction pad attachment is enhanced by spinule friction[J]. J Exp Biol, 2015, 218(22): 3551-3558.
|
[38] |
Wang YP, Yang XB, Chen YF, et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the Remora suckerfish[J]. Sci Robot, 2017, 2(10): eaan807.
|
[39] |
Wainwright DK, Kleinteich T, Kleinteich A, et al. Stick tight: Suction adhesion on irregular surfaces in the northern clingfish[J]. Biol Lett, 2013, 9(3): 20130234.
|