[1] |
王悦, 厉杭芸, 汤婉怡, 等. 机器学习在牙体缺损修复中的应用[J]. 口腔医学, 2024, 44(7): 551-555.
|
[2] |
Chen QX, Wu J, Li SS, et al. An ontology-driven, case-based clinical decision support model for removable partial denture design[J]. Sci Rep, 2016, 6: 27855.
doi: 10.1038/srep27855
pmid: 27297679
|
[3] |
Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: Chances and challenges[J]. J Dent Res, 2020, 99(7): 769-774.
doi: 10.1177/0022034520915714
pmid: 32315260
|
[4] |
Lerner H, Mouhyi J, Admakin O, et al. Artificial intelligence in fixed implant prosthodontics: A retrospective study of 106 implant-supported monolithic zirconia crowns inserted in the posterior jaws of 90 patients[J]. BMC Oral Health, 2020, 20(1): 80.
doi: 10.1186/s12903-020-1062-4
pmid: 32188431
|
[5] |
Kurt Bayrakdar S, Orhan K, Bayrakdar IS, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images[J]. BMC Med Imaging, 2021, 21(1): 86.
doi: 10.1186/s12880-021-00618-z
pmid: 34011314
|
[6] |
Shen KL, Huang CL, Lin YC, et al. Effects of artificial intelligence-assisted dental monitoring intervention in patients with periodontitis: A randomized controlled trial[J]. J Clin Periodontol, 2022, 49(10): 988-998.
|
[7] |
Alarifi A, AlZubi AA. Memetic search optimization along with genetic scale recurrent neural network for predictive rate of implant treatment[J]. J Med Syst, 2018, 42(11): 202.
doi: 10.1007/s10916-018-1051-1
pmid: 30225666
|
[8] |
Nakano Y, Suzuki N, Kuwata F. Predicting oral malodour based on the microbiota in saliva samples using a deep learning approach[J]. BMC Oral Health, 2018, 18(1): 128.
doi: 10.1186/s12903-018-0591-6
pmid: 30064419
|
[9] |
Ozden FO, Özgönenel O, Özden B, et al. Diagnosis of periodontal diseases using different classification algorithms: A preliminary study[J]. Niger J Clin Pract, 2015, 18(3): 416-421.
doi: 10.4103/1119-3077.151785
pmid: 25772929
|
[10] |
Chang HJ, Lee SJ, Yong TH, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis[J]. Sci Rep, 2020, 10(1): 7531.
|
[11] |
Alqutaibi AY, Algabri R, Ibrahim WI, et al. Dental implant planning using artificial intelligence: A systematic review and meta-analysis[J]. J Prosthet Dent, 2024: S0022- 3913(24)00227-0.
|
[12] |
戴雨霖, 张新春. 人工智能在口腔修复诊疗中的应用与进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(1): 65-69.
|
[13] |
Yang XQ, Li XG, Li XC, et al. Two-stream regression network for dental implant position prediction[J]. Expert Syst Appl, 2024, 235: 121135.
|
[14] |
Park W, Huh JK, Lee JH. Automated deep learning for classification of dental implant radiographs using a large multi-center dataset[J]. Sci Rep, 2023, 13(1): 486.
|
[15] |
Macrì M, D’Albis V, D’Albis G, et al. The role and applications of artificial intelligence in dental implant planning: A systematic review[J]. Bioengineering(Basel), 2024, 11(8): 778.
|
[16] |
Lee WF, Day MY, Fang CY, et al. Establishing a novel deep learning model for detecting peri-implantitis[J]. J Dent Sci, 2024, 19(2): 1165-1173.
|
[17] |
Wu ZA, Yu XB, Wang F, et al. Application of artificial intelligence in dental implant prognosis: A scoping review[J]. J Dent, 2024, 144: 104924.
|
[18] |
周宏志, 张可, 王学玲, 等. 不同形态种植体在两种骨质内以不同角度植入的应力分析[J]. 口腔医学研究, 2022, 38(2): 138-143.
doi: 10.13701/j.cnki.kqyxyj.2022.02.010
|
[19] |
俞懿强, 刘伟才. 口腔固定修复全数字化流程的临床应用现状及问题[J]. 中华口腔医学杂志, 2023, 58(5): 398-403.
|
[20] |
潘雪. CAD/CAM技术在口腔固定修复中的应用[J]. 饮食保健, 2017, 4(6): 25.
|
[21] |
Hwang JJ, Azernikov S, Efros AA, et al. Learning beyond human expertise with generative models for dental restorations[EB/OL]. 2018: 1804.00064. https://arxiv.org/abs/1804.00064v1.
|
[22] |
Yeslam HE, Freifrau von Maltzahn N, Nassar HM. Revolutionizing CAD/CAM-based restorative dental processes and materials with artificial intelligence: A concise narrative review[J]. Peer J, 2024, 12: e17793.
|
[23] |
Roh J, Kim J, Lee JM. Two-stage deep learning framework for occlusal crown depth image generation[J]. Comput Biol Med, 2024, 183: 109220.
|
[24] |
赵一姣, 王勇. 数字化技术在口腔医学的临床应用现状与分析[J]. 四川大学学报(医学版), 2024, 55(1): 101-110.
|
[25] |
满毅, 蓝冬萍. 数字化颌位关系记录与转移方法的研究进展[J]. 中国口腔种植学杂志, 2024, 29(3): 212-217.
|
[26] |
刘名, 刘小舟, 张广道, 等. 可摘局部义齿设计的数字化转型现状与发展[J]. 中国实用口腔科杂志, 2024, 17(4): 385-390.
|
[27] |
陈昕, 毛渤淳, 解晨阳, 等. 一种逐次多级专家系统辅助的可摘局部义齿支架修复技术[J]. 华西口腔医学杂志, 2020, 38(4):475-478.
|
[28] |
苏庭舒, 唐颖, 孙健. 口腔内扫描和三维打印在可摘局部义齿制造中的应用[J]. 中国组织工程研究, 2020, 24(4): 544-548.
|
[29] |
吴宇佳, 周崇阳, 徐子能, 等. 基于机器学习的可摘局部义齿基牙选择模型的合理性评价[J]. 中国实用口腔科杂志, 2023, 16(3): 333-338.
|
[30] |
吴江, 王伟娜, 于海, 等. 应用数字化技术同期完成牙体及牙列缺损修复一例[J]. 中华口腔医学杂志, 2020, 55(10): 754-756.
|
[31] |
黄墁珊, 寻春雷. T-scan系统结合数字化模型测量咬合力分布的可靠性和准确性研究[J]. 中华口腔正畸学杂志, 2020, 27(2): 90-95.
|
[32] |
萧宁, 孙玉春, 赵一姣, 等. 三种数字化分析算法测量咬合接触分布及面积的对比研究[J]. 北京大学学报(医学版), 2020, 52(1): 144-151.
doi: 10.19723/j.issn.1671-167X.2020.01.023
|
[33] |
陈思涵, 苏庭舒, 阿地力江·依米提, 等. 基于口内扫描的三维数字化牙列模型咬合匹配评价分析[J]. 中国实用口腔科杂志, 2019, 12(7): 409-414.
doi: 10.19538/j.kq.2019.07.006
|
[34] |
Sadegh-Zadeh SA, Bagheri M, Saadat M. Decoding children dental health risks: A machine learning approach to identifying key influencing factors[J]. Front Artif Intell, 2024, 7: 1392597.
|
[35] |
Arsiwala-Scheppach LT, Chaurasia A, Müller A, et al. Machine learning in dentistry: A scoping review[J]. J Clin Med, 2023, 12(3): 937.
|
[36] |
Bernauer SA, Zitzmann NU, Joda T. The use and performance of artificial intelligence in prosthodontics: A systematic review[J]. Sensors(Basel), 2021, 21(19): 6628.
|
[37] |
杨予萱, 谭静怡, 周鹂鹂, 等. 深度学习在口腔影像分析中的应用[J]. 中国组织工程研究, 2025, 29(11): 2385-2393.
|
[38] |
李高磊, 黄玮, 孙浩, 等. 机器学习在微生物组宿主表型预测中的应用[J]. 微生物学报, 2021, 61(9): 2581-2593.
|
[39] |
Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in Oral & Maxillofacial Surgery[J]. BMC Oral Health, 2019, 19(1): 238.
|