口腔医学 ›› 2025, Vol. 45 ›› Issue (9): 696-700.doi: 10.13591/j.cnki.kqyx.2025.09.010
郝艳迪1,2, 刘晔1, 高鹏玉3, 杨景舒1,2, 徐全臣1,2()
收稿日期:
2024-12-10
出版日期:
2025-09-28
发布日期:
2025-09-11
通讯作者:
徐全臣 E-mail: qyfyxqc@126.com
基金资助:
HAO Yandi1,2, LIU Ye1, GAO Pengyu3, YANG Jingshu1,2, XU Quanchen1,2()
Received:
2024-12-10
Online:
2025-09-28
Published:
2025-09-11
摘要:
牙周炎是一种常见的慢性感染性疾病,它的发生是口腔微生物和宿主免疫系统相互作用的结果,免疫系统在调节炎症过程中发挥双重功能。巨噬细胞是固有免疫的组成部分,在牙周炎的发生和消退中发挥重要作用。该文对巨噬细胞在牙周炎中的作用及靶向巨噬细胞治疗牙周炎的相关进展进行综述。
中图分类号:
郝艳迪, 刘晔, 高鹏玉, 杨景舒, 徐全臣. 巨噬细胞与牙周炎关系的研究进展[J]. 口腔医学, 2025, 45(9): 696-700.
HAO Yandi, LIU Ye, GAO Pengyu, YANG Jingshu, XU Quanchen. Research progress of the relationship between macrophages and periodontitis[J]. Stomatology, 2025, 45(9): 696-700.
[1] | Cui Y, Hong SB, Xia YH, et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci(Weinh), 2023, 10(27): e2302029. |
[2] | Chen RR, Ji YT, Li T, et al. Anti-Porphyromonas gingivalis nanotherapy for maintaining bacterial homeostasis in periodontitis[J]. Int J Antimicrob Agents, 2023, 61(6): 106801. |
[3] | Liu JQ, Dan RC, Zhou XM, et al. Immune senescence and periodontitis: From mechanism to therapy[J]. J Leukoc Biol, 2022, 112(5): 1025-1040. |
[4] | Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease[J]. Pharmacol Ther, 2022, 229: 107919. |
[5] | Alkakhan W, Farrar N, Sikora V, et al. Statins modulate microenvironmental cues driving macrophage polarization in simulated periodontal inflammation[J]. Cells, 2023, 12(15): 1961. |
[6] | Yin LY, Li XZ, Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair[J]. Jpn Dent Sci Rev, 2022, 58: 336-347. |
[7] | Dou L, Shi XM, He XS, et al. Macrophage phenotype and function in liver disorder[J]. Front Immunol, 2020, 10: 3112. |
[8] |
Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10: 1462.
doi: 10.3389/fimmu.2019.01462 pmid: 31333642 |
[9] |
Gharavi AT, Hanjani NA, Movahed E, et al. The role of macrophage subtypes and exosomes in immunomodulation[J]. Cell Mol Biol Lett, 2022, 27(1): 83.
doi: 10.1186/s11658-022-00384-y pmid: 36192691 |
[10] |
Ma YG, Kemp SS, Yang XY, et al. Cellular mechanisms underlying the impairment of macrophage efferocytosis[J]. Immunol Lett, 2023, 254: 41-53.
doi: 10.1016/j.imlet.2023.02.001 pmid: 36740099 |
[11] | 谭海鹏, 黄浙勇. 巨噬细胞对凋亡细胞的清除及炎症调控作用[J]. 复旦学报(医学版), 2020, 47(6): 911-916. |
[12] | Razi S, Yaghmoorian Khojini J, Kargarijam F, et al. Macrophage efferocytosis in health and disease[J]. Cell Biochem Funct, 2023, 41(2): 152-165. |
[13] |
Horst AK, Tiegs G, Diehl L. Contribution of macrophage efferocytosis to liver homeostasis and disease[J]. Front Immunol, 2019, 10: 2670.
doi: 10.3389/fimmu.2019.02670 pmid: 31798592 |
[14] | 耿锐, 陆军. 巨噬细胞的胞葬作用与炎症性疾病关系的研究进展[J]. 东南大学学报(医学版), 2023, 42(3): 466-474. |
[15] | Peng SM, Fu HJ, Li R, et al. A new direction in periodontitis treatment: Biomaterial-mediated macrophage immunotherapy[J]. J Nanobiotechnology, 2024, 22(1): 359. |
[16] | Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage polariza-tion and osteoporosis: A review[J]. Nutrients, 2020, 12(10): 2999. |
[17] |
Ruytinx P, Proost P, Van Damme J, et al. Chemokine-induced macrophage polarization in inflammatory conditions[J]. Front Immunol, 2018, 9: 1930.
doi: 10.3389/fimmu.2018.01930 pmid: 30245686 |
[18] | Sun X, Gao J, Meng X, et al. Polarized macrophages in periodontitis: Characteristics, function, and molecular signaling[J]. Front Immunol, 2021, 12: 763334. |
[19] | Lew JH, Naruishi K, Kajiura Y, et al. High glucose-mediated cytokine regulation in gingival fibroblasts and THP-1 macrophage: A possible mechanism of severe periodontitis with diabetes[J]. Cell Physiol Biochem, 2018, 50(3): 973-986. |
[20] |
Gonzalez OA, Novak MJ, Kirakodu S, et al. Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues[J]. Immunol Invest, 2015, 44(7): 643-664.
doi: 10.3109/08820139.2015.1070269 pmid: 26397131 |
[21] | Clark D, Halpern B, Miclau T, et al. The contribution of macrophages in old mice to periodontal disease[J]. J Dent Res, 2021, 100(12): 1397-1404. |
[22] | Wang Y, Shi RT, Zhai R, et al. Matrix stiffness regulates macrophage polarization in atherosclerosis[J]. Pharmacol Res, 2022, 179: 106236. |
[23] |
Yao YL, Xu XH, Jin LP. Macrophage polarization in physiological and pathological pregnancy[J]. Front Immunol, 2019, 10: 792.
doi: 10.3389/fimmu.2019.00792 pmid: 31037072 |
[24] |
Garlet GP, Giannobile WV. Macrophages: The bridge between inflammation resolution and tissue repair?[J]. J Dent Res, 2018, 97(10): 1079-1081.
doi: 10.1177/0022034518785857 pmid: 29993304 |
[25] | Chen XT, Wan Z, Yang L, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis modelsIL-10 mRNA[J]. J Nanobiotechnology, 2022, 20(1): 110. |
[26] | Miao YB, He LT, Qi XY, et al. Injecting immunosuppressive M2 macrophages alleviates the symptoms of periodontitis in mice[J]. Front Mol Biosci, 2020, 7: 603817. |
[27] | Wang WZ, Zheng CX, Yang JH, et al. Intersection between macrophages and periodontal pathogens in periodontitis[J]. J Leukoc Biol, 2021, 110(3): 577-583. |
[28] |
Kourtzelis I, Hajishengallis G, Chavakis T. Phagocytosis of apoptotic cells in resolution of inflammation[J]. Front Immunol, 2020, 11: 553.
doi: 10.3389/fimmu.2020.00553 pmid: 32296442 |
[29] | Tajbakhsh A, Kovanen PT, Rezaee M, et al. Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis[J]. Int J Biochem Cell Biol, 2020, 120: 105684. |
[30] |
Gerlach BD, Ampomah PB, Yurdagul A Jr, et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury[J]. Cell Metab, 2021, 33(12): 2445-2463. e8.
doi: 10.1016/j.cmet.2021.10.015 pmid: 34784501 |
[31] |
Kourtzelis I, Li XF, Mitroulis I, et al. DEL-1 promotes macroph-age efferocytosis and clearance of inflammation[J]. Nat Immunol, 2019, 20(1): 40-49.
doi: 10.1038/s41590-018-0249-1 pmid: 30455459 |
[32] | Liu J, Ruan JP, Weir MD, et al. Periodontal bone-ligament-cementum regenerationscaffolds and stem cells[J]. Cells, 2019, 8(6): 537. |
[33] | Kwon T, Lamster IB, Levin L. Current concepts in the manage-ment of periodontitis[J]. Int Dent J, 2021, 71(6):462-476. |
[34] |
Tahamtan S, Shirban F, Bagherniya M, et al. The effects of statins on dental and oral health: A review of preclinical and clinical studies[J]. J Transl Med, 2020, 18(1): 155.
doi: 10.1186/s12967-020-02326-8 pmid: 32252793 |
[35] | Guo XQ, Huang ZJ, Ge Q, et al. Glipizide alleviates periodontitis pathogenicityinhibition of angiogenesis, osteoclastogenesis and M1/M2 macrophage ratio in periodontal tissue[J]. Inflammation, 2023, 46(5): 1917-1931. |
[36] |
Ren JL, Han X, Lohner H, et al. Serum- and glucocorticoid-inducible kinase 1 promotes alternative macrophage polarization and restrains inflammation through FoxO1 and STAT3 signaling[J]. J Immunol, 2021, 207(1): 268-280.
doi: 10.4049/jimmunol.2001455 pmid: 34162726 |
[37] | Wu XW, Wang YD, Chen HT, et al. Phosphatase and tensin homologue determine inflammatory status by differentially regulating the expression of Akt1 and Akt2 in macrophage alternative polarization of periodontitis[J]. J Clin Periodontol, 2023, 50(2): 220-231. |
[38] |
孙一帆, 洪丽华. 牙源性干细胞来源的外泌体在牙周组织再生中的研究进展[J]. 口腔医学研究, 2024, 40(4): 287-292.
doi: 10.13701/j.cnki.kqyxyj.2024.04.002 |
[39] |
Nakao Y, Fukuda T, Zhang QZ, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater, 2021, 122: 306-324.
doi: 10.1016/j.actbio.2020.12.046 pmid: 33359765 |
[40] | Qiao X, Tang J, Dou L, et al. Dental pulp stem cell-derived exosomes regulate anti-inflammatory and osteogenesis in periodontal ligament stem cells and promote the repair of experimental periodontitis in rats[J]. Int J Nanomedicine, 2023, 18: 4683-4703. |
[41] | Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in micea macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126. |
[42] | Zhu FJ, Wang SL, Zhu XL, et al. Potential effects of biomaterials on macrophage function and their signalling pathways[J]. Biomater Sci, 2023, 11(21): 6977-7002. |
[43] | 王钰. 负载槲皮素的二氧化铈纳米粒子调控巨噬细胞极化治疗牙周炎的研究[D]. 长春: 吉林大学, 2022. |
[44] | Yang SY, Hu Y, Zhao R, et al. Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitisthe miR-21a-5p/PDCD4/NF-κB pathway[J]. J Nanobiotechnology, 2024, 22(1): 94. |
[45] | Wang SR, Li CY, Chen S, et al. Multifunctional bilayer nanofibrous membrane enhances periodontal regeneration mesenchymal stem cell recruitment and macrophage polarization[J]. Int J Biol Macromol, 2024, 273(Pt 1): 132924. |
[46] | Chen B, Li SY, Chang YQ, et al. Macrophages contribute to periodontal wound healing mainly in the tissue proliferation stage[J]. J Periodontal Res, 2023, 58(1): 122-130. |
[47] | Glinton KE, Ma WS, Lantz C, et al. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation[J]. J Clin Invest, 2022, 132(9): e140685. |
[48] |
Li B, Xin ZL, Gao SY, et al. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis[J]. Theranostics, 2023, 13(1): 231-249.
doi: 10.7150/thno.78878 pmid: 36593966 |
[1] | 姜玉涵, 尤品哲, 赵雪芸, 林默涵, 施博伟, 蒲俊霖, 贾波. 佛手柑内酯抗炎抑制骨吸收治疗牙周炎的研究[J]. 口腔医学, 2025, 45(9): 667-674. |
[2] | 李昊谕, 吴懿宽, 丁佩惠, 李晓军. 牙周致病菌与消化系统肿瘤相关性的研究进展[J]. 口腔医学, 2025, 45(9): 691-695. |
[3] | 王铭心, 段伊媛, 冯可嘉, 聂晨瑜, 马骞. ROS响应型纳米载体用于牙髓炎症的抗氧化治疗[J]. 口腔医学, 2025, 45(7): 511-517. |
[4] | 贺梦柯, 鲁嘉韦, 段晖, 罗礼君. 人工智能技术在牙周炎影像诊断中的研究进展[J]. 口腔医学, 2025, 45(6): 460-464. |
[5] | 高晶萍, 贾凌璐, 梁洪宁, 文勇. 熊果苷通过NF-κB信号通路减轻脂多糖对人牙周膜干细胞成骨分化的抑制作用[J]. 口腔医学, 2025, 45(5): 347-354. |
[6] | 徐晟瀛, 孙徐麟, 黄佳萍, 石卓瑾, 丁佩惠. 龈下喷砂治疗牙周炎与种植体周围炎的研究进展[J]. 口腔医学, 2025, 45(5): 380-385. |
[7] | 陈旭, 李璐, 王晓茜, 王天尧, 徐艳. Ⅲ/Ⅳ期牙周炎的临床诊治决策进展[J]. 口腔医学, 2025, 45(1): 13-17. |
[8] | 彭焱, 张驰, 高雳, 李希庭, 赵川江. Ⅳ期牙周炎患者的正畸考量和时机选择[J]. 口腔医学, 2025, 45(1): 25-36. |
[9] | 包佳琦, 王中秀, 冯贻苗, 雷利红, 陈莉丽. 正畸治疗中牙周硬组织相关并发症的处理[J]. 口腔医学, 2025, 45(1): 37-44. |
[10] | 杨泽, 潘亚萍. 牙周炎患者的种植考量因素[J]. 口腔医学, 2025, 45(1): 8-12. |
[11] | 朱莎莎, 田卫东, 郭淑娟. 不同类型程序性细胞死亡在牙周炎中的研究进展[J]. 口腔医学, 2024, 44(8): 624-629. |
[12] | 徐华兴, 韦晓玲. 多不饱和脂肪酸代谢产物在口腔疾病中的作用及应用研究进展[J]. 口腔医学, 2024, 44(7): 545-550. |
[13] | 黄蔼岚, 郭培培, 陆晓庆, 吴锦涛, 李泽汉, 徐秀清, 王娟, 周莉丽. 牙髓干细胞治疗糖尿病的研究进展[J]. 口腔医学, 2024, 44(6): 452-457. |
[14] | 林仁杰, 戴安娜, 汪淑华, 丁佩惠. 糖尿病影响牙周炎患者口腔龈下菌群和唾液菌群组成的研究进展[J]. 口腔医学, 2024, 44(6): 458-461. |
[15] | 王雪奎, 孙瑶. 中性粒细胞与牙周炎关系的研究进展[J]. 口腔医学, 2024, 44(4): 292-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||