Stomatology ›› 2025, Vol. 45 ›› Issue (2): 156-160.doi: 10.13591/j.cnki.kqyx.2025.02.014
• Review • Previous Articles
Received:
2023-12-11
Online:
2025-02-28
Published:
2025-02-26
CLC Number:
PENG Hanyu, LI Xiao. Progress of research on the effect of implant surface nano-morphology on osteoblast adhesion[J]. Stomatology, 2025, 45(2): 156-160.
[1] |
李明玥, 肖爽, 栾霖群, 等. 牙发生相关磷蛋白促进成骨细胞粘附及矿化研究[J]. 口腔医学研究, 2023, 39(9): 810-814.
doi: 10.13701/j.cnki.kqyxyj.2023.09.009 |
[2] |
Brånemark PI. Osseointegration and its experimental background[J]. J Prosthet Dent, 1983, 50(3): 399-410.
doi: 10.1016/s0022-3913(83)80101-2 pmid: 6352924 |
[3] | He XD, Yamada M, Watanabe J, et al. Titanium nanotopography induces osteocyte lacunar-canalicular networks to strengthen osseointegration[J]. Acta Biomater, 2022, 151: 613-627. |
[4] | Zhao QM, Yi L, Jiang LB, et al. Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation[J]. Nanomedicine, 2019, 16: 149-161. |
[5] | Chen SC, Guo YL, Liu RH, et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration[J]. Colloids Surf B Biointerfaces, 2018, 164: 58-69. |
[6] |
Qi XY, Shang YL, Sui L. State of osseointegrated titanium implant surfaces in topographical aspect[J]. J Nanosci Nanotechnol, 2018, 18(12): 8016-8028.
doi: 10.1166/jnn.2018.16381 pmid: 30189918 |
[7] |
Guadarrama Bello D, Fouillen A, Badia A, et al. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells[J]. Acta Biomater, 2017, 60: 339-349.
doi: S1742-7061(17)30459-2 pmid: 28728969 |
[8] |
Roy S, Ruest PJ, Hanks SK. FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation[J]. J Cell Biochem, 2002, 84(2): 377-388.
pmid: 11787067 |
[9] |
Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: A regulator of cellular function through focal adhesions[J]. Nanomedicine, 2010, 6(5): 619-633.
doi: 10.1016/j.nano.2010.01.009 pmid: 20138244 |
[10] | Li Y, Li BE, Song YJ, et al. Improved osteoblast adhesion and osseointegration on TiO2 nanotubes surface with hydroxyapatite coating[J]. Dent Mater J, 2019, 38(2): 278-286. |
[11] | Zhang YN, Wang K, Dong K, et al. Enhanced osteogenic differentiation of osteoblasts on CaTiO3 nanotube film[J]. Colloids Surf B Biointerfaces, 2020, 187: 110773. |
[12] | 杨帮成, 周学东, 于海洋, 等. 钛种植体表面改性方法[J]. 华西口腔医学杂志, 2019, 37(2): 124-129. |
[13] |
Zhu Y, Zheng TX, Wen LM, et al. Osteogenic capability of strontium and icariin-loaded TiO2 nanotube coatings in vitro and in osteoporotic rats[J]. J Biomater Appl, 2021, 35(9): 1119-1131.
doi: 10.1177/0885328221997998 pmid: 33632004 |
[14] | Li Y, Song YJ, Ma AB, et al. Surface immobilization of TiO2nanotubes with bone morphogenetic protein-2 synergistically enhances initial preosteoblast adhesion and osseointegration[J]. Biomed Res Int, 2019, 2019: 5697250. |
[15] |
Thamma U, Kowal TJ, Falk MM, et al. Nanostructure of bioactive glass affects bone cell attachment via protein restructuring upon adsorption[J]. Sci Rep, 2021, 11(1): 5763.
doi: 10.1038/s41598-021-85050-7 pmid: 33707489 |
[16] |
Su EP, Justin DF, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces[J]. Bone Joint J, 2018, 100-B(1 Supple A): 9-16.
doi: 10.1302/0301-620X.100B1.BJJ-2017-0551.R1 pmid: 29292334 |
[17] | Park J, Cimpean A, Tesler AB, et al. Anodic TiO2nanotubes: Tailoring osteoinduction via drug delivery[J]. Nanomaterials, 2021, 11(9): 2359. |
[18] |
Kulkarni M, Mazare A, Park J, et al. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence[J]. Acta Biomater, 2016, 45: 357-366.
doi: S1742-7061(16)30455-X pmid: 27581395 |
[19] | Wu LN, Zhou CC, Zhang BQ, et al. Construction of biomimetic natural wood hierarchical porous-structure bioceramic with micro/nanowhisker coating to modulate cellular behavior and osteoinductive activity[J]. ACS Appl Mater Interfaces, 2020, 12(43): 48395-48407. |
[20] | Li XD, Wang MY, Zhang WJ, et al. A magnesium-incorporated nanoporous titanium coating for rapid osseointegration[J]. Int J Nanomedicine, 2020, 15: 6593-6603. |
[21] | Shen XK, Al-Baadani MA, He HL, et al. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo[J]. Int J Nanomedicine, 2019, 14: 3043-3054. |
[22] | Liu J, Wang YL, Goh WI, et al. Talin determines the nanoscale architecture of focal adhesions[J]. Proc Natl Acad Sci USA, 2015, 112(35): E4864-E4873. |
[23] | Gallagher JO, McGhee KF, Wilkinson CDW, et al. Interaction of animal cells with ordered nanotopography[J]. IEEE Trans Nanobioscience, 2002, 1(1): 24-28. |
[24] | Hou C, An J, Zhao DY, et al. Surface modification techniques to produce micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration[J]. Front Bioeng Biotechnol, 2022, 10: 835008. |
[25] | Luo JJ, Zhao SD, Gao XS, et al. TiO2nanotopography-driven osteoblast adhesion through Coulomb’s force evolution[J]. ACS Appl Mater Interfaces, 2022, 14(30): 34400-34414. |
[26] | Lou HY, Zhao WT, Zeng YP, et al. The role of membrane curvature in nanoscale topography-induced intracellular signaling[J]. Acc Chem Res, 2018, 51(5): 1046-1053. |
[27] | Schaeske J, Fadeeva E, Schlie-Wolter S, et al. Cell type-specific adhesion and migration on laser-structured opaque surfaces[J]. Int J Mol Sci, 2020, 21(22): 8442. |
[28] | Salaie RN, Besinis A, Le HR, et al. The biocompatibility of silver and nanohydroxyapatite coatings on titanium dental implants with human primary osteoblast cells[J]. Mater Sci Eng C Mater Biol Appl, 2020, 107: 110210. |
[29] |
Wang H, Zhang XR, Wang HC, et al. Enhancing the osteogenic differentiation and rapid osseointegration of 3D printed Ti6Al4Vimplants via nano-topographic modification[J]. J Biomed Nanotechnol, 2018, 14(4): 707-715.
doi: 10.1166/jbn.2018.2551 pmid: 31352944 |
[30] | Ghezzi B, Lagonegro P, Attolini G, et al. Hydrogen plasma treatment confers enhanced bioactivity to silicon carbide-based nanowires promoting osteoblast adhesion[J]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111772. |
[31] |
Xiao SJ, Wang M, Wang LP, et al. Environment-friendly synthesis of trace element Zn, Sr, and F codoping hydroxyapatite with non-cytotoxicity and improved osteoblast proliferation and differentiation[J]. Biol Trace Elem Res, 2018, 185(1): 148-161.
doi: 10.1007/s12011-017-1226-5 pmid: 29349676 |
[32] | Mi BG, Xiong W, Xu N, et al. Strontium-loaded titania nanotube arrays repress osteoclast differentiation through multiple signalling pathways: in vitro and in vivo studies[J]. Sci Rep, 2017, 7(1): 2328. |
[33] | Qiao HX, Song GQ, Huang Y, et al. Si, Sr, Ag Co-doped hydroxyapatite/TiO2 coating: Enhancement of its antibacterial activity and osteoinductivity[J]. RSC Adv, 2019, 9(24): 13348-13364. |
[34] | Wang BB, Bian AQ, Jia FH, et al. “Dual-functional” strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration[J]. Biomater Adv, 2022, 133: 112650. |
[35] |
González Ocampo JI, Machado de Paula MM, Bassous NJ, et al. Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite[J]. Acta Biomater, 2019, 83: 425-434.
doi: S1742-7061(18)30622-6 pmid: 30342285 |
[36] | da Silva RA, da Silva Feltran G, Ferreira MR, et al. The impact of bioactive surfaces in the early stages of osseointegration: An in vitro comparative study evaluating the HAnano and SLActive super hydrophilic surfaces[J]. Biomed Res Int, 2020, 2020: 3026893. |
[37] | Wozniak MA, Modzelewska K, Kwong L, et al. Focal adhesion regulation of cell behavior[J]. Biochim Biophys Acta, 2004, 1692(2/3): 103-119. |
[38] |
Bai L, Liu YL, Du ZB, et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration[J]. Acta Biomater, 2018, 76: 344-358.
doi: S1742-7061(18)30369-6 pmid: 29908975 |
[39] | Li B, Gao P, Zhang HQ, et al. Osteoimmunomodulation, osseointegration, and in vivo mechanical integrity of pure Mg coated with HA nanorod/pore-sealed MgO bilayer[J]. Biomater Sci, 2018, 6(12): 3202-3218. |
[40] | Mondal S, Park S, Choi J, et al. Hydroxyapatite: A journey from biomaterials to advanced functional materials[J]. Adv Colloid Interface Sci, 2023, 321: 103013. |
[41] |
Bellis SL. Advantages of RGD peptides for directing cell associationwith biomaterials[J]. Biomaterials, 2011, 32(18): 4205-4210.
doi: 10.1016/j.biomaterials.2011.02.029 pmid: 21515168 |
[42] |
Taubenberger AV, Woodruff MA, Bai HF, et al. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation[J]. Biomaterials, 2010, 31(10): 2827-2835.
doi: 10.1016/j.biomaterials.2009.12.051 pmid: 20053443 |
[43] | Zhu YC, Cao Z, Peng Y, et al. Facile Surface modification method for synergistically enhancing the biocompatibility and bioactivity of poly(ether ether ketone) that induced osteodifferentia-tion[J]. ACS Appl Mater Interfaces, 2019, 11(31): 27503-27511. |
[44] | Hao L, Lawrence J, Chian KS. Osteoblast cell adhesion on a laser modified zirconia based bioceramic[J]. J Mater Sci Mater Med, 2005, 16(8): 719-726. |
[45] | Huang ZF, Wang ZF, Li CH, et al. The osteoinduction of RGD and Mg ion functionalized bioactive zirconia coating[J]. J Mater Sci Mater Med, 2019, 30(8): 95. |
[46] | 刘菲, 张云涛, 马向瑞, 等. 精氨酰-甘氨酰-天冬氨酸多肽层层自组装修饰钛片对小鼠成骨样细胞MC3T3-E1的影响[J]. 国际口腔医学杂志, 2019, 46(2): 203-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||