[1] |
Carvalho RWF, do Egito Vasconcelos BC. Assessment of factors associated with surgical difficulty during removal of impacted lower third molars[J]. J Oral Maxillofac Surg, 2011, 69(11): 2714-2721.
|
[2] |
Jing QP, Song HC, Huang H, et al. Characterizations of three-dimensional root morphology and topological location of mandibular third molars by cone-beam computed tomography[J]. Surg Radiol Anat, 2023, 45(5): 527-536.
doi: 10.1007/s00276-023-03111-0
pmid: 36884060
|
[3] |
da Silva Sampieri MB, Viana FLP, Cardoso CL, et al. Radiographic study of mandibular third molars: Evaluation of the position and root anatomy in Brazilian population[J]. Oral Maxillofac Surg, 2018, 22(2): 163-168.
doi: 10.1007/s10006-018-0685-y
pmid: 29450664
|
[4] |
Carter K, Worthington S. Predictors of third molar impaction: A systematic review and meta-analysis[J]. J Dent Res, 2016, 95(3): 267-276.
doi: 10.1177/0022034515615857
pmid: 26561441
|
[5] |
Bailey E, Kashbour W, Shah N, et al. Surgical techniques for the removal of mandibular wisdom teeth[J]. Cochrane Database Syst Rev, 2020, 7(7): CD004345.
|
[6] |
Hauge Matzen L, Christensen J, Hintze H, et al. Diagnostic accuracy of panoramic radiography, stereo-scanography and cone beam CT for assessment of mandibular third molars before surgery[J]. Acta Odontol Scand, 2013, 71(6): 1391-1398.
doi: 10.3109/00016357.2013.764574
pmid: 23356838
|
[7] |
Matzen LH, Berkhout E. Cone beam CT imaging of the mandibular third molar: A position paper prepared by the European Academy of DentoMaxilloFacial Radiology (EADMFR)[J]. Dentomaxillofac Radiol, 2019, 48(5): 20190039.
|
[8] |
Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry[J]. J Dent Res, 2021, 100(3): 232-244.
doi: 10.1177/0022034520969115
pmid: 33118431
|
[9] |
Hung K, Montalvao C, Tanaka R, et al. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review[J]. Dentomaxillofac Radiol, 2020, 49(1): 20190107.
|
[10] |
Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography[J]. Dentomaxillofac Radiol, 2019, 48(3): 20180218.
|
[11] |
Fukuda M, Inamoto K, Shibata N, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography[J]. Oral Radiol, 2020, 36(4): 337-343.
doi: 10.1007/s11282-019-00409-x
pmid: 31535278
|
[12] |
Kuwana R, Ariji Y, Fukuda M, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs[J]. Dentomaxillofac Radiol, 2021, 50(1): 20200171.
|
[13] |
Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions usingpanoramic and cone beam computed tomographic images based on deep learning neural network[J]. Oral Dis, 2020, 26(1): 152-158.
|
[14] |
Wang ZP, Jin LY, Wang S, et al. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system[J]. Postharvest Biol Technol, 2022, 185: 111808.
|
[15] |
Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149.
|
[16] |
Duan KW, Bai S, Xie LX, et al. CenterNet: Keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul, Korea (South). IEEE, 2019: 6568-6577.
|
[17] |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
[18] |
Yuasa H, Kawai T, Sugiura M. Classification of surgical difficulty in extracting impacted third molars[J]. Br J Oral Maxillofac Surg, 2002, 40(1): 26-31.
|
[19] |
Akadiri OA, Obiechina AE. Assessment of difficulty in third molar surgery: A systematic review[J]. J Oral Maxillofac Surg, 2009, 67(4): 771-774.
|
[20] |
Zhang WY, Tang Y, Liu C, et al. Root and root canal variations of the human maxillary and mandibular third molars in a Chinese population: A micro-computed tomographic study[J]. Arch Oral Biol, 2018, 95: 134-140.
doi: S0003-9969(18)30435-7
pmid: 30107301
|
[21] |
Carvalho JS, Lotz M, Rubi L, et al. Preinterventional third-molar assessment using robust machine learning[J]. J Dent Res, 2023, 102(13): 1452-1459.
|
[22] |
Choi E, Lee S, Jeong E, et al. Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography[J]. Sci Rep, 2022, 12(1): 2456.
doi: 10.1038/s41598-022-06483-2
pmid: 35165342
|
[23] |
Fukuda M, Ariji Y, Kise Y, et al. Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(3): 336-343.
|