[1] |
Hussein H, Kishen A. Local immunomodulatory effects of intracanal medications in apical periodontitis[J]. J Endod, 2022, 48(4): 430-456.
doi: 10.1016/j.joen.2022.01.003
pmid: 35032538
|
[2] |
Wang FL, Jiang Y, Huang X, et al. Pro-inflammatory cytokine TNF-α attenuates BMP9-induced osteo/odontoblastic differentiation of the stem cells of dental apical papilla (SCAPs)[J]. Cell Physiol Biochem, 2017, 41(5): 1725-1735.
|
[3] |
Georgiou AC, Cornejo Ulloa P, Van Kessel GH, et al. Reactive oxygen species can be traced locally and systemically in apical periodontitis: A systematic review[J]. Arch Oral Biol, 2021, 129: 105167.
|
[4] |
Zhao W, Zhang Y, Chen J, et al. Revolutionizing oral care: Reactive oxygen species (ROS)-regulating biomaterials for combating infection and inflammation[J]. Redox Biol, 2025, 79: 103451.
|
[5] |
Zhou X, Zhou Q, He ZZ, et al. ROS balance autoregulating core-shell CeO2@ZIF-8/Au nanoplatform for wound repair[J]. Nanomicro Lett, 2024, 16(1): 156.
|
[6] |
Yang J, Zhou JZ, Zhao YY, et al. Hollow CeO2 with ROS-scavenging activity to alleviate colitis in mice[J]. Int J Nanomedicine, 2021, 16: 6889-6904.
|
[7] |
Liu ZN, Lin YX, Fang XL, et al. Epigallocatechin-3-gallate promotes osteo-/odontogenic differentiation of stem cells from the apical papilla through activating the BMP-smad signaling pathway[J]. Molecules, 2021, 26(6): 1580.
|
[8] |
Hu YZ, Gu JX, Lin J, et al. (-)-Epigallocatechin-3-gallate (EGCG) modulates polarized macrophages to suppress M1 phenotype and promote M2 polarization in vitro and in vivo[J]. J Funct Foods, 2021, 87: 104743.
|
[9] |
张曦丹, 孙吉宇, 付馨靓, 等. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
|
[10] |
Zhao X, Wang Y, Zhu TT, et al. Mesoporous calcium-silicate nanoparticles loaded with Prussian blue promotes Enterococcus faecalis ferroptosis-like death by regulating bacterial redox pathway ROS/GSH[J]. Int J Nanomedicine, 2022, 17: 5187-5205.
|
[11] |
Yu J, Bian HL, Zhao YN, et al. Epigallocatechin-3-gallate/mineralization precursors co-delivery hollow mesoporous nanosystem for synergistic manipulation of dentin exposure[J]. Bioact Mater, 2023, 23: 394-408.
doi: 10.1016/j.bioactmat.2022.11.018
pmid: 36474660
|
[12] |
Leng DY, Li Y, Zhu J, et al. The antibiofilm activity and mechanism of nanosilver- and nanozinc-incorporated mesoporous calcium-silicate nanoparticles[J]. Int J Nanomedicine, 2020, 15: 3921-3936.
|
[13] |
王莹, 李铭铭, 赵潇, 等. 载银锌介孔钙硅纳米粒子与聚己内酯复合材料的体外生物活性研究[J]. 口腔医学, 2022, 42(2): 110-116.
|
[14] |
Kahler B, Rossi-Fedele G, Chugal N, et al. An evidence-based review of the efficacy of treatment approaches for immature permanent teeth with pulp necrosis[J]. J Endod, 2017, 43(7): 1052-1057.
doi: S0099-2399(17)30290-X
pmid: 28511779
|
[15] |
Liang J, Zhao YJ, Li JQ, et al. A pilot study on biological characteristics of human CD24+ stem cells from the apical papilla[J]. J Dent Sci, 2022, 17(1): 264-275.
doi: 10.1016/j.jds.2021.01.012
pmid: 35028047
|
[16] |
Liu C, Xiong H, Chen K, et al. Long-term exposure to pro-inflammatory cytokines inhibits the osteogenic/dentinogenic differentia-tion of stem cells from the apical papilla[J]. Int Endod J, 2016, 49(10): 950-959.
doi: 10.1111/iej.12551
pmid: 26383494
|
[17] |
Tur J, Pereira-Lopes S, Vico T, et al. Mitofusin 2 in macrophages links mitochondrial ROS production, cytokine release, phagocytosis, autophagy, and bactericidal activity[J]. Cell Rep, 2020, 32(8): 108079.
|
[18] |
Wang KH, Liu JY, Yue JL, et al. Nlrp3 inflammasome drives regulatory T cell depletion to accelerate periapical bone erosion[J]. Int Endod J, 2024, 57(8): 1110-1123.
doi: 10.1111/iej.14062
pmid: 38441141
|
[19] |
Yang MM, Shen ZS, Zhang XF, et al. Ferroptosis of macrophages facilitates bone loss in apical periodontitis via NRF2/FSP1/ROS pathway[J]. Free Radic Biol Med, 2023, 208: 334-347.
|
[20] |
Xia XW, Li JQ, Chen CY, et al. Collaborative influence of morphology tuning and RE (La, Y, and Sm) doping on photocatalytic performance of nanoceria[J]. Environ Sci Pollut Res, 2022, 29(59): 88866-88881.
|
[21] |
Corsi F, Deidda Tarquini G, Urbani M, et al. The impressive anti-inflammatory activity of cerium oxide nanoparticles: More than redox?[J]. Nanomaterials (Basel), 2023, 13(20): 2803.
|
[22] |
Liu CM, Hao K, Liu ZJ, et al. Epigallocatechin gallate (EGCG) attenuates staphylococcal alpha-hemolysin (Hla)-induced NLRP3 inflammasome activation via ROS-MAPK pathways and EGCG-Hla interactions[J]. Int Immunopharmacol, 2021, 100: 108170.
|
[23] |
Kim JH, Irfan M, Hossain MA, et al. BDNF/TrkB is a crucial regulator in the inflammation-mediated odontoblastic differentiation of dental pulp stem cells[J]. Cells, 2023, 12(14): 1851.
|
[24] |
Dalla-Costa K, Yurtsever FV, Penteado J, et al. Melatonin has a stimulatory effect on osteoblasts by upregulating col-i and opn expression/secretion[J]. Acta Odontol Latinoam, 2020, 33(2): 125.
pmid: 32920615
|
[25] |
Yu YJ, Zhao S, Gu DA, et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway[J]. Nanoscale, 2022, 14(7): 2628-2637.
|
[26] |
Wang J, Sun QH, Wei Y, et al. Sustained release of epigallocatechin-3-gallate from chitosan-based scaffolds to promote osteogenesis of mesenchymal stem cell[J]. Int J Biol Macromol, 2021, 176: 96-105.
doi: 10.1016/j.ijbiomac.2021.02.060
pmid: 33577812
|
[27] |
Xiao X, Jiang KM, Xu YX, et al. (-)-Epigallocatechin-3-gallate induces cell apoptosis in chronic myeloid leukaemia by regulating Bcr/Abl-mediated p38-MAPK/JNK and JAK2/STAT3/AKT signalling pathways[J]. Clin Exp Pharmacol Physiol, 2019, 46(2): 126-136.
|