[1] |
Yang JW, Yuan GH, Chen Z. Pulp regeneration: Current approaches and future challenges[J]. Front Physiol, 2016, 7: 58.
doi: 10.3389/fphys.2016.00058
pmid: 27014076
|
[2] |
刘金凤, 牛雪微, 超博, 等. 牙髓再生的研究现状[J]. 口腔医学研究, 2017, 33(1): 108-111.
doi: 10.13701/j.cnki.kqyxyj.2017.01.026
|
[3] |
肖博林, 张伟, 陈刚. 细胞外囊泡与口腔肿瘤免疫[J]. 口腔医学, 2023, 43(9): 769-774.
|
[4] |
石维薇, 郭淑娟. 外泌体在口腔组织发育和再生研究新进展[J]. 口腔医学研究, 2019, 35(11): 1016-1019.
doi: 10.13701/j.cnki.kqyxyj.2019.11.002
|
[5] |
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978.
doi: 10.1016/0092-8674(83)90040-5
pmid: 6307529
|
[6] |
Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: Exosomes as mediators of intercellular communication[J]. Wiley Interdiscip Rev RNA, 2012, 3(2): 286-293.
|
[7] |
Yu B, Zhang XM, Li XR. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014, 15(3): 4142-4157.
doi: 10.3390/ijms15034142
pmid: 24608926
|
[8] |
Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6): 816-826.
doi: 10.1038/ncb3169
pmid: 25985394
|
[9] |
Syn NL, Wang LZ, Chow EKH, et al. Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges[J]. Trends Biotechnol, 2017, 35(7): 665-676.
doi: S0167-7799(17)30040-9
pmid: 28365132
|
[10] |
何泓志, 麻丹丹. 牙髓干细胞外泌体的研究进展[J]. 口腔疾病防治, 2019, 27(10):652-657.
doi: 10.12016/j.issn.2096-1456.2019.09.008
|
[11] |
Martínez-Limón A, Joaquin M, Caballero M, et al. The p38 pathway: From biology to cancer therapy[J]. Int J Mol Sci, 2020, 21(6): 1913.
|
[12] |
Yu D, Zhao X, Cheng JZ, et al. Downregulated microRNA-488 enhances odontoblast differentiation of human dental pulp stem cells via activation of the p38 MAPK signaling pathway[J]. J Cell Physiol, 2019, 234(2): 1442-1451.
|
[13] |
Wang BL, Wang Z, Nan X, et al. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway[J]. J Cell Physiol, 2019, 234(4): 4840-4850.
|
[14] |
Xian XH, Gong QM, Li C, et al. Exosomes with highly angiogenic potential for possible use in pulp regeneration[J]. J Endod, 2018, 44(5): 751-758.
doi: S0099-2399(18)30005-0
pmid: 29426641
|
[15] |
Alcayaga-Miranda F, Varas-Godoy M, Khoury M. Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration[J]. Stem Cells Int, 2016, 2016: 3409169.
|
[16] |
Huang CC, Narayanan R, Alapati S, et al. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration[J]. Biomaterials, 2016, 111: 103-115.
|
[17] |
Zhou ZY, Zheng JM, Lin DL, et al. Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway[J]. Int J Mol Med, 2022, 50(6): 143.
|
[18] |
乔虎军, 王国祥, 郝鑫. 转化生长因子β/Smad信号通路和骨关节炎研究进展[J]. 中国运动医学杂志, 2019, 38(2): 143-151.
|
[19] |
Wu ML, Liu XM, Li ZH, et al. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β/SMAD2/3 signalling[J]. Cell Prolif, 2021, 54(7): e13074.
|
[20] |
杨正涛, 林方梁, 温利梅. miR-508-3p靶向AFF4/TGFβ1信号通路调控人牙髓细胞分化的机制研究[J]. 广西医科大学学报, 2021, 38(9): 1671-1677.
|
[21] |
Hu XL, Zhong YQ, Kong YY, et al. Lineage-specific exosomes promote the odontogenic differentiation of human dental pulp stem cells(DPSCs) through TGFβ1/smads signaling pathway via transfer of microRNAs[J]. Stem Cell Res Ther, 2019, 10(1): 170.
|
[22] |
Chen DF, Wang KW, Zheng Y, et al. Exosomes-mediated LncRNA ZEB1-AS1 facilitates cell injuries by miR-590-5p/ETS1 axis through the TGF-β/smad pathway in oxidized low-density lipoprotein-induced human umbilical vein endothelial cells[J]. J Cardiovasc Pharmacol, 2021, 77(4): 480-490.
doi: 10.1097/FJC.0000000000000974
pmid: 33818551
|
[23] |
Yao Y, Chen R, Wang GW, et al. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium[J]. Stem Cell Res Ther, 2019, 10(1): 225.
|
[24] |
Wang ZT, Tian T, Chen LY, et al. 980 nm photobiomodulation promotes osteo/odontogenic differentiation of the stem cells from human exfoliated deciduous teeth via the cross talk between BMP/smad and Wnt/β-catenin signaling pathways[J]. Photochem Photobiol, 2022, 99(4):1181-1192.
|
[25] |
Zhou Y, Xu J, Luo H, et al. Wnt signaling pathway in cancer immunotherapy[J]. Cancer Lett, 2022, 525:84-96.
|
[26] |
Hunter DJ, Bardet C, Mouraret S, et al. Wnt acts as a prosurvival signal to enhance dentin regeneration[J]. J Bone Miner Res, 2015, 30(7): 1150-1159.
doi: 10.1002/jbmr.2444
pmid: 25556760
|
[27] |
Kornsuthisopon C, Photichailert S, Nowwarote N, et al. Wnt signaling in dental pulp homeostasis and dentin regeneration[J]. Arch Oral Biol, 2022, 134: 105322.
|
[28] |
Wang MH, Li J, Ye YY, et al. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro[J]. Differentiation, 2020, 111: 1-11.
|
[29] |
Zhang SC, Yang Y, Jia SX, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue[J]. Theranostics, 2020, 10(13): 5914-5931.
|
[30] |
Sun JY, Wang ZG, Liu P, et al. Exosomes derived from human gingival mesenchymal stem cells attenuate the inflammatory response in periodontal ligament stem cells[J]. Front Chem, 2022, 10: 863364.
|
[31] |
Yang SD, Guo S, Tong S, et al. Exosomal miR-130a-3p regulates osteogenic differentiation of Human Adipose-Derived stem cells through mediating SIRT7/Wnt/β-catenin axis[J]. Cell Prolif, 2020, 53(10): e12890.
|
[32] |
柴盈, 刘芷扬, 刘玥旻, 等. 人牙髓干细胞来源外泌体促进周围神经损伤修复的实验研究[J]. 中国口腔颌面外科杂志, 2022, 20(2): 105-110.
|
[33] |
Huang GT, Hu M, Lu DH, et al. Protective effect and potential mechanism of Schwann cell-derived exosomes on mechanical damage of rat dorsal root ganglion cells[J]. J Obstet Gynaecol Res, 2021, 47(10): 3691-3701.
|
[34] |
Garrouste F, Remacle-Bonnet M, Fauriat C, et al. Prevention of cytokine-induced apoptosis by insulin-like growth factor-I is independent of cell adhesion molecules in HT29-D4 colon carcinoma cells-evidence for a NF-kappaB-dependent survival mechanism[J]. Cell Death Differ, 2002, 9(7): 768-779.
doi: 10.1038/sj.cdd.4401022
pmid: 12058282
|
[35] |
Geng T, Song ZY, Xing JX, et al. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway[J]. Int J Nanomedicine, 2020, 15: 2647-2658.
|
[36] |
Liu Y, Gao Y, Zhan XL, et al. TLR4 activation by lipopolysaccharide and Streptococcus mutans induces differential regulation of proliferation and migration in human dental pulp stem cells[J]. J Endod, 2014, 40(9): 1375-1381.
|
[37] |
Li L, Ge JP. Exosome-derived lncRNA-Ankrd26 promotes dental pulp restoration by regulating miR-150-TLR4 signaling[J]. Mol Med Rep, 2022, 25(5): 152.
|
[38] |
Sun DG, Xin BC, Wu D, et al. miR-140-5p-mediated regulation of the proliferation and differentiation of human dental pulp stem cells occurs through the lipopolysaccharide/toll-like receptor 4 signaling pathway[J]. Eur J Oral Sci, 2017, 125(6): 419-425.
doi: 10.1111/eos.12384
pmid: 29130547
|
[39] |
张玲莉, 周绪昌, 吴伟. BMP-Smad信号通路在骨髓间充质干细胞分化中的作用[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(6): 618-626.
|
[40] |
Fan JB, Lee CS, Kim S, et al. Generation of small RNA-modulated exosome mimetics for bone regeneration[J]. ACS Nano, 2020, 14(9): 11973-11984.
doi: 10.1021/acsnano.0c05122
pmid: 32897692
|