口腔医学 ›› 2025, Vol. 45 ›› Issue (1): 1-7.doi: 10.13591/j.cnki.kqyx.2025.01.001
• 学部委员专栏 • 下一篇
收稿日期:
2024-09-16
出版日期:
2025-01-28
发布日期:
2025-01-16
通讯作者:
周学东 E-mail:作者简介:
周学东,四川大学二级教授,中国医学科学院学部委员,国家教学名师,华西口腔医院学术院长、口腔疾病防治全国重点实验室主任。主要从事龋病、口腔感染性疾病与全身健康的研究和临床诊疗。以第一完成人获国家科技进步二等奖1项,全国首届创先争优奖,部省级科技进步一等奖6项,国际口腔医学威廉盖茨(Gies)奖2项,爱思唯尔中国高被引学者,主编《牙体牙髓病学》《龋病学》《中华口腔科学》等教材专著19部。研究成果3次入选中国医学科学院颁布的中国医学年度重要进展。
基金资助:
YANG Peiyue1, PENG Xian2, ZHOU Xuedong1()
Received:
2024-09-16
Online:
2025-01-28
Published:
2025-01-16
摘要:
口腔和肠道微生物群是人体内最复杂的两大微生物群,在维持人体各种生理平衡中发挥重要作用。辅助生殖技术(assisted reproductive technology, ART)是一种帮助不孕夫妇孕育、生育健康胎儿的治疗技术。目前的辅助生殖技术包括含或不含卵母细胞细胞质内单精子注射的体外受精技术(in vitro fertilization technique of oocyte/intracytoplasmic sperm injection IVF/ICSI)。口腔-肠道微生物的异位定植、代谢产物和免疫调节等多种途径可能影响辅助生殖的效果。本文主要综述了口腔-肠道微生物群对接受人工辅助生殖治疗母体的影响途径、影响机制及具有潜在益处的干预措施。
中图分类号:
杨沛岳, 彭显, 周学东. 口腔-肠道微生物组与辅助生殖的研究进展[J]. 口腔医学, 2025, 45(1): 1-7.
YANG Peiyue, PENG Xian, ZHOU Xuedong. Maternal oral-gut microbiome and artificial assisted reproduction[J]. Stomatology, 2025, 45(1): 1-7.
表1
口腔菌群在子宫内易位定植的研究 Fig.1 Translocation of oral pathogens in uterus"
细菌种类早产孕妇羊水 | 检测部位PCR[ | 检测方法F.n |
---|---|---|
F.n | 早产合并早发性新生儿败血症孕妇脐带血及羊水 | PCR、16S RNA测序分析[ |
F.n | 先兆早产孕妇胎盘组织 | PCR[ |
F.n | 尾静脉注射牙菌斑后小鼠胎盘血管及羊水 | PCR、16S RNA测序分析[ |
P.g | 先兆早产孕妇羊水 | PCR[ |
P.g | 早产孕妇的胎盘组织及羊膜上皮 | 免疫组织化学染色[ |
P.g | 子痫前期孕妇胎盘组织 | 下一代测序分析[ |
Bergeyella.sp | 早产合并早发性新生儿败血症孕妇脐带血及羊水 | 16S RNA测序分析[ |
Bergeyella.sp | 早产病例的羊水 | 16S RNA测序分析[ |
[1] | HOMD. Human Oral Microbiome Database[EB/OL]. [2023-12-16]. https://homd.org/. |
[2] |
Hajishengallis G, Lamont RJ, Koo H. Oral polymicrobial communities: Assembly, function, and impact on diseases[J]. Cell Host Microbe, 2023, 31(4): 528-538.
doi: 10.1016/j.chom.2023.02.009 pmid: 36933557 |
[3] | Baker JL, Mark Welch JL, Kauffman KM, et al. The oral microbiome: Diversity, biogeography and human health[J]. Nat Rev Microbiol, 2024, 22(2): 89-104. |
[4] |
Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities[J]. Nat Rev Immunol, 2021, 21(7): 426-440.
doi: 10.1038/s41577-020-00488-6 pmid: 33510490 |
[5] |
Figuero E, Han YW, Furuichi Y. Periodontal diseases and adverse pregnancy outcomes: Mechanisms[J]. Periodontol 2000, 2020, 83(1): 175-188.
doi: 10.1111/prd.12295 pmid: 32385886 |
[6] | Han YW, Redline RW, Li M, et al. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: Implication of oral bacteria in preterm birth[J]. Infect Immun, 2004, 72(4): 2272-2279. |
[7] | Chan E, Brundler MA, Zhang KY. Identification of Fusobacterium nucleatum in formalin-fixed, paraffin-embedded placental tissues by 16S rRNA sequencing in a case of extremely preterm birth secondary to amniotic fluid infection[J]. Pathology, 2019, 51(3): 320-322. |
[8] |
Savitha JN, Bhavya B, Yadalam U, et al. Detection of Porphyromonas gingivalis in umbilical cord blood of new-born and in subgingival plaque of pregnant participants with periodontal disease and its association with pregnancy outcomes: An observational study[J]. J Indian Soc Periodontol, 2022, 26(4): 365-372.
doi: 10.4103/jisp.jisp_45_21 pmid: 35959303 |
[9] | Singh S, Pal N, Shubham S, et al. Polycystic ovary syndrome: Etiology, current management, and future therapeutics[J]. J Clin Med, 2023, 12(4): 1454. |
[10] | Graham ME, Jelin A, Hoon AHJr, et al. Assisted reproductive technology: Short- and long-term outcomes[J]. Dev Med Child Neurol, 2023, 65(1): 38-49. |
[11] | Chinè A, Reschini M, Fornelli G, et al. Low ovarian reserve and risk of miscarriage in pregnancies derived from assisted reproductive technology[J]. Hum Reprod Open, 2023, 2023(3): hoad026. |
[12] | Yao XR, Dong ST, Guan WZ, et al. Gut microbiota-derived short chain fatty acids are associated with clinical pregnancy outcome in women undergoing IVF/ICSI-ET: A retrospective study[J]. Nutrients, 2023, 15(9): 2143. |
[13] | 任晶辉, 土增荣. 子宫内膜微生态及其在辅助生殖技术中应用的研究进展[J]. 中国微生态学杂志, 2024, 36(8): 980-984. |
[14] |
Kageyama S, Sakata S, Ma J, et al. High-resolution detection of translocation of oral bacteria to the gut[J]. J Dent Res, 2023, 102(7): 752-758.
doi: 10.1177/00220345231160747 pmid: 37204134 |
[15] |
Kitamoto S, Kamada N. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms[J]. Periodontol 2000, 2022, 89(1): 142-153.
doi: 10.1111/prd.12424 pmid: 35244953 |
[16] | Chen BY, Lin WZ, Li YL, et al. Roles of oral microbiota and oral-gut microbial transmission in hypertension[J]. J Adv Res, 2023, 43: 147-161. |
[17] | Bao J, Li LL, Zhang YH, et al. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota[J]. Int J Oral Sci, 2022, 14(1): 32. |
[18] | Dong ZJ, Lv WQ, Zhang CY, et al. Correlation analysis of gut microbiota and serum metabolome with Porphyromonas gingivalis-induced metabolic disorders[J]. Front Cell Infect Microbiol, 2022, 12: 858902. |
[19] | Lu JY, Zhang S, Huang YZ, et al. Periodontitis-related salivary microbiota aggravates Alzheimer’s disease via gut-brain axis crosstalk[J]. Gut Microbes, 2022, 14(1): 2126272. |
[20] | Elzayat H, Mesto G, Al-Marzooq F. Unraveling theimpact of gut and oral microbiome on gut health in inflammatory bowel diseases[J]. Nutrients, 2023, 15(15): 3377. |
[21] | Liu YM, Huang WK, Dai K, et al. Inflammatory response of gut, spleen, and liver in mice induced by orally administered Porphyromonas gingivalis[J]. J Oral Microbiol, 2022, 14(1): 2088936. |
[22] | Yamazaki K. Oral-gut axis as a novel biological mechanism linking periodontal disease and systemic diseases: A review[J]. Jpn Dent Sci Rev, 2023, 59: 273-280. |
[23] | Mesa MD, Loureiro B, Iglesia I, et al. The evolving microbiome from pregnancy to early infancy: A comprehensive review[J]. Nutrients, 2020, 12(1): 133. |
[24] | Massoni RSS, Aranha AMF, Matos FZ, et al. Correlation of periodontal and microbiological evaluations, with serum levels of estradiol and progesterone, during different trimesters of gestation[J]. Sci Rep, 2019, 9(1): 11762. |
[25] | Han YW, Fardini Y, Chen C, et al. Term stillbirth caused by oral Fusobacterium nucleatum[J]. Obstet Gynecol, 2010, 115(2 Pt 2): 442-445. |
[26] |
Hasegawa-Nakamura K, Tateishi F, Nakamura T, et al. The possible mechanism of preterm birth associated with periodontopathic Porphyromonas gingivalis[J]. J Periodontal Res, 2011, 46(4): 497-504.
doi: 10.1111/j.1600-0765.2011.01366.x pmid: 21488875 |
[27] |
Madianos PN, Lieff S, Murtha AP, et al. Maternal periodontitis and prematurity. part Ⅱ: Maternal infection and fetal exposure[J]. Ann Periodontol, 2001, 6(1): 175-182.
pmid: 11887461 |
[28] | Yong WJ, Zhao YH, Jiang XE, et al. Sodium butyrate alleviates pre-eclampsia in pregnant rats by improving the gut microbiota and short-chain fatty acid metabolites production[J]. J Appl Microbiol, 2022, 132(2): 1370-1383. |
[29] |
Chen X, Li P, Liu M, et al. Gut dysbiosis induces the develop-ment of pre-eclampsia through bacterial translocation[J]. Gut, 2020, 69(3): 513-522.
doi: 10.1136/gutjnl-2019-319101 pmid: 31900289 |
[30] | Bearfield C, Davenport ES, Sivapathasundaram V, et al. Possible association between amniotic fluid micro-organism infection and microflora in the mouth[J]. BJOG, 2002, 109(5): 527-533. |
[31] |
Han YW, Shen T, Chung P, et al. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth[J]. J Clin Microbiol, 2009, 47(1): 38-47.
doi: 10.1128/JCM.01206-08 pmid: 18971361 |
[32] |
Doyle RM, Alber DG, Jones HE, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery[J]. Placenta, 2014, 35(12): 1099-1101.
doi: 10.1016/j.placenta.2014.10.007 pmid: 25458966 |
[33] | Wang XW, Buhimschi CS, Temoin S, et al. Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis[J]. PLoS One, 2013, 8(2): e56131. |
[34] | Ye CC, Katagiri S, Miyasaka N, et al. The periodontopathic bacteria in placenta, saliva and subgingival plaque of threatened preterm labor and preterm low birth weight cases: A longitudinal study in Japanese pregnant women[J]. Clin Oral Investig, 2020, 24(12): 4261-4270. |
[35] |
Coppenhagen-Glazer S, Sol A, Abed J, et al. Fap2 of Fusobacterium nucleatumis a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth[J]. Infect Immun, 2015, 83(3): 1104-1113.
doi: 10.1128/IAI.02838-14 pmid: 25561710 |
[36] |
Fardini Y, Chung P, Dumm R, et al. Transmission of diverse oral bacteria to murine placenta: Evidence for the oral microbiome as a potential source of intrauterine infection[J]. Infect Immun, 2010, 78(4): 1789-1796.
doi: 10.1128/IAI.01395-09 pmid: 20123706 |
[37] | León R, Silva N, Ovalle A, et al. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor[J]. J Periodontol, 2007, 78(7): 1249-1255. |
[38] |
Katz J, Chegini N, Shiverick KT, et al. Localization of P. gingivalis in preterm delivery placenta[J]. J Dent Res, 2009, 88(6): 575-578.
doi: 10.1177/0022034509338032 pmid: 19587165 |
[39] | Amarasekara R, Jayasekara RW, Senanayake H, et al. Microbiome of the placenta in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia[J]. J Obstet Gynaecol Res, 2015, 41(5): 662-669. |
[40] | Han YW, Ikegami A, Bissada NF, et al. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth[J]. J Clin Microbiol, 2006, 44(4): 1475-1483. |
[41] | Ahn JS, Yang JW, Oh SJ, et al. Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway[J]. BMB Rep, 2021, 54(6): 323-328. |
[42] | Li C, Yu R, Ding YM. Association between Porphyromonas gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity[J]. Front Cell Infect Microbiol, 2022, 12: 1026457. |
[43] | Orlandi M, Muñoz Aguilera E, Marletta D, et al. Impact of the treatment of periodontitis on systemic health and quality of life: A systematic review[J]. J Clin Periodontol, 2022, 49(Suppl 24): 314-327. |
[44] | Liang Y, Zeng WH, Hou T, et al. Gut microbiome and reproductive endocrine diseases: A Mendelian randomization study[J]. Front Endocrinol, 2023, 14: 1164186. |
[45] | Candeliere F, Raimondi S, Ranieri R, et al. β-glucuronidase pattern predicted from gut metagenomes indicates potentially diversified pharmacomicrobiomics[J]. Front Microbiol, 2022, 13: 826994. |
[46] | Chadchan SB, Singh V, Kommagani R. Female reproductive dysfunctions and the gut microbiota[J]. J Mol Endocrinol, 2022, 69(3): R81-R94. |
[47] |
Salliss ME, Farland LV, Mahnert ND, et al. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain[J]. Hum Reprod Update, 2021, 28(1): 92-131.
doi: 10.1093/humupd/dmab035 pmid: 34718567 |
[48] | Liu YJ, Chen HN, Feng LP, et al. Interactions between gut microbiota and metabolites modulate cytokine network imbalances in women with unexplained miscarriage[J]. NPJ Biofilms Microbiomes, 2021, 7(1): 24. |
[49] |
Roy R, Nguyen-Ngo C, Lappas M. Short-chain fatty acids as novel therapeutics for gestational diabetes[J]. J Mol Endocrinol, 2020, 65(2): 21-34.
doi: 10.1530/JME-20-0094 pmid: 32580157 |
[50] | May KS, den Hartigh LJ. Gut microbial-derived short chain fatty acids: Impact on adipose tissue physiology[J]. Nutrients, 2023, 15(2): 272. |
[51] | Chen ZL, Meima ME, Peeters RP, et al. Thyroid hormone transporters in pregnancy and fetal development[J]. Int J Mol Sci, 2022, 23(23): 15113. |
[52] | Kimura I, Miyamoto J, Ohue-Kitano R, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice[J]. Science, 2020, 367(6481): eaaw8429. |
[53] | Minasi MG, Anagnostopoulou C, Boitrelle F, et al. Oocytes evaluation and in-vitro fertilization/intra cytoplasmic sperm injection outcomes[J]. Panminerva Med, 2023, 65(2): 179-187. |
[54] | Li A, Li F, Song W, et al. Maternal exposure to 4-vinylcyclohexenediepoxide during pregnancy leads to disorder of gut microbiota and bile acid metabolism in offspring[J]. Ecotoxicol Environ Saf, 2024, 269: 115811. |
[55] | Ruebel ML, Piccolo BD, Mercer KE, et al. Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization[J]. Am J Physiol Endocrinol Metab, 2019, 316(3): E383-E396. |
[56] |
Yong W, Wang JJ, Leng Y, et al. Role of obesity in female reproduction[J]. Int J Med Sci, 2023, 20(3): 366-375.
doi: 10.7150/ijms.80189 pmid: 36860674 |
[57] | Nagy RA, Homminga I, Jia C, et al. Trimethylamine-N-oxide is present in human follicular fluid and is a negative predictor of embryo quality[J]. Hum Reprod, 2020, 35(1): 81-88. |
[58] |
Ye QH, Cai S, Wang S, et al. Maternal short and medium chain fatty acids supply during early pregnancy improves embryo survival through enhancing progesterone synthesis in rats[J]. J Nutr Biochem, 2019, 69: 98-107.
doi: S0955-2863(18)31152-5 pmid: 31063920 |
[59] | Ye QH, Li HY, Xu BY, et al. Butyrate improves porcine endometrial epithelial cell receptivity via enhancing acetylation of histone H3K9[J]. Mol Nutr Food Res, 2023, 67(16): e2200703. |
[60] | Pronovost GN, Yu KB, Coley-O’Rourke EJL, et al. The maternal microbiome promotes placental development in mice[J]. Sci Adv, 2023, 9(40): eadk1887. |
[61] | Vuong HE, Pronovost GN, Williams DW, et al. The maternal microbiome modulates fetal neurodevelopment in mice[J]. Nature, 2020, 586(7828): 281-286. |
[62] | Sinha T, Brushett S, Prins J, et al. The maternal gut microbiome during pregnancy and its role in maternal and infant health[J]. Curr Opin Microbiol, 2023, 74: 102309. |
[63] | Hu MJ, Eviston D, Hsu P, et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia[J]. Nat Commun, 2019, 10(1): 3031. |
[64] |
Tocariu R, Stan D, Mitroi R F, et al. Incidence of complications among in vitro fertilization pregnancies[J]. J Med Life, 2023, 16(3): 399-405.
doi: 10.25122/jml-2023-0048 pmid: 37168314 |
[65] |
Fardini Y, Wang XW, Témoin S, et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity[J]. Mol Microbiol, 2011, 82(6): 1468-1480.
doi: 10.1111/j.1365-2958.2011.07905.x pmid: 22040113 |
[66] | Garcia-So J, Zhang XW, Yang XH, et al. Omega-3 fatty acids suppress Fusobacterium nucleatum-induced placental inflammation originating from maternal endothelial cells[J]. J CIInsight, 2019, 4(3): e125436. |
[67] |
Chen Y, Chen XQ, Chen PY, et al. Alteration of the gut microbiota in missed abortion[J]. Indian J Microbiol, 2023, 63(1): 106-119.
doi: 10.1007/s12088-023-01063-y pmid: 37179577 |
[68] | Jin JJ, Gao LM, Zou XL, et al. Gut dysbiosis promotes preeclampsia by regulating macrophages and trophoblasts[J]. Circ Res, 2022, 131(6): 492-506. |
[69] | di Pierro F, Sinatra F, Cester M, et al. Effect of L. crispatus M247 administration on pregnancy outcomes in women undergoing IVF: A controlled, retrospective, observational, and open-label study[J]. Microorganisms, 2023, 11(11): 2796. |
[70] |
Komiya S, Naito Y, Okada H, et al. Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study[J]. J Clin Biochem Nutr, 2020, 67(1): 105-111.
doi: 10.3164/jcbn.20-53 pmid: 32801476 |
[1] | 陈旭, 李璐, 王晓茜, 王天尧, 徐艳. Ⅲ/Ⅳ期牙周炎的临床诊治决策进展[J]. 口腔医学, 2025, 45(1): 13-17. |
[2] | 许砚耕, 张艳玲, 胡文杰, 王翠, 韦宁. 以微笑美观为导向的口腔软组织美学评价方法概述[J]. 口腔医学, 2025, 45(1): 18-24. |
[3] | 彭焱, 张驰, 高雳, 李希庭, 赵川江. Ⅳ期牙周炎患者的正畸考量和时机选择[J]. 口腔医学, 2025, 45(1): 25-36. |
[4] | 包佳琦, 王中秀, 冯贻苗, 雷利红, 陈莉丽. 正畸治疗中牙周硬组织相关并发症的处理[J]. 口腔医学, 2025, 45(1): 37-44. |
[5] | 李根, 王华, 谷妍. 数字化三维打印前方牵引联合快速扩缩矫治替牙期骨性Ⅲ类的临床效果研究[J]. 口腔医学, 2025, 45(1): 51-57. |
[6] | 朱鹏, 顾永春, 吴易涵, 徐小明. 下颌前牙根管系统的解剖形态及其与三根型下颌第一恒磨牙关系的研究[J]. 口腔医学, 2025, 45(1): 58-63. |
[7] | 周悦, 唐振兴, 李宇. 拔除前磨牙正畸病例的磨牙支抗丧失及其影响因素[J]. 口腔医学, 2025, 45(1): 64-68. |
[8] | 张天翼, 郑义, 吕雯昊, 马宁. 双网络交联水凝胶在骨组织再生领域的研究进展[J]. 口腔医学, 2025, 45(1): 69-74. |
[9] | 杨泽, 潘亚萍. 牙周炎患者的种植考量因素[J]. 口腔医学, 2025, 45(1): 8-12. |
[10] | 高慧, 余东升. 国际牙外伤学会牙外伤预防指南(2024版)解读[J]. 口腔医学, 2024, 44(12): 881-886. |
[11] | 程烨, 曾维浩, 李煌, 雷浪. 下颌第二磨牙远中移动牙根限制相关因素的锥形束计算机断层扫描研究[J]. 口腔医学, 2024, 44(12): 887-891. |
[12] | 郭松松, 章振兴, 张平, 姜成惠, 程杰, 江宏兵, 李盛. 两种术式矫治唇腭裂患者上颌发育不足的比较研究[J]. 口腔医学, 2024, 44(12): 892-898. |
[13] | 卓盈颖, 林捷, 陈睿桢, 沈纪元, 林玲, 蔡娉娉, 郑志强. 冠材料对种植牙应力分布影响的有限元分析[J]. 口腔医学, 2024, 44(12): 899-903. |
[14] | 江楠, 顾卫平. 4种支架材料下不同的咬合接触对上颌All-on-4即刻负载影响的有限元分析[J]. 口腔医学, 2024, 44(12): 904-911. |
[15] | 许是, 陆展翼, 苗雷英. 下颌近中阻生智齿拔除术对邻牙邻面接触强度的影响[J]. 口腔医学, 2024, 44(12): 912-916. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||