口腔医学 ›› 2026, Vol. 46 ›› Issue (1): 70-75.doi: 10.13591/j.cnki.kqyx.2026.01.012
收稿日期:2025-06-24
出版日期:2026-01-28
发布日期:2026-01-16
通讯作者:
邓雅兰
E-mail:yalandeng@scu.edu.cn
基金资助:
ZHOU Yue, DENG Yalan(
), HU Tao
Received:2025-06-24
Online:2026-01-28
Published:2026-01-16
Contact:
DENG Yalan
E-mail:yalandeng@scu.edu.cn
摘要:
非编码RNA是一类调节性RNA,可以以生理剂量精细调控细菌致病性,有望在减少耐药和细胞毒性的同时有效控制感染。变异链球菌非编码RNA广泛存在于转录组中,通过与RNA、DNA和蛋白质相互作用,调控毒力因子表达、生物膜形成及环境应激响应,并通过多层级网络协同调控龋病的发生与进展。本文就变异链球菌中非编码RNA的生物学功能、作用机制与应用前景作一综述,以期为小分子防龋新材料的研发提供理论基础和探索方向。
中图分类号:
周月, 邓雅兰, 胡涛. 非编码RNA在调控变异链球菌致龋性中的作用与机制研究进展[J]. 口腔医学, 2026, 46(1): 70-75.
ZHOU Yue, DENG Yalan, HU Tao. Advances in the regulatory role and mechanisms of noncoding RNAs on cariogenicity of Streptococcus mutans[J]. Stomatology, 2026, 46(1): 70-75.
| [1] |
Qin XF, Zi H, Zeng XJ. Changes in the global burden of untreated dental caries from 1990 to 2019: A systematic analysis for the Global Burden of Disease study[J]. Heliyon, 2022, 8(9): e10714.
doi: 10.1016/j.heliyon.2022.e10714 |
| [2] |
Li ZY, Yu CH, Chen H. Global, regional, and national caries of permanent teeth incidence, prevalence, and disability-adjusted life years, 1990—2021: Analysis for the global burden of disease study[J]. BMC Oral Health, 2025, 25(1): 715.
doi: 10.1186/s12903-025-06086-z |
| [3] |
Zeng YH, Chen Y, Duan CC, et al. A transcriptional analysis showing the effects of GH12 combined with fluoride for suppressing the acidogenicity of Streptococcus mutans biofilms[J]. Microorganisms, 2023, 11(7): 1796.
doi: 10.3390/microorganisms11071796 |
| [4] |
Atazhanova GA, Levaya YK, Badekova KZ, et al. Inhibition of the biofilm formation of plant Streptococcus mutans[J]. Pharmaceuticals, 2024, 17(12): 1613.
doi: 10.3390/ph17121613 |
| [5] | Namburu JR, Rajendra Sanosh AB, Poosarla CS, et al. Streptococcus mutans-specific antimicrobial peptide C16G2-mediated caries prevention: A review[J]. Front Dent, 2022, 19: 17. |
| [6] |
Gao Z, Chen XY, Wang C, et al. New strategies and mechanisms for targeting Streptococcus mutans biofilm formation to prevent dental caries: A review[J]. Microbiol Res, 2024, 278: 127526.
doi: 10.1016/j.micres.2023.127526 |
| [7] |
Ng Kwan Lim E, Sasseville C, Carrier MC, et al. Keeping up with RNA-based regulation in bacteria: New roles for RNA binding proteins[J]. Trends Genet, 2021, 37(1): 86-97.
doi: 10.1016/j.tig.2020.09.014 pmid: 33077249 |
| [8] | Shi L, Han X, Liu F, et al. Review on long non-coding RNAs as biomarkers and potentially therapeutic targets for bacterial infections[J]. Curr Issues Mol Biol, 2024: 7558-7576. |
| [9] |
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics[J]. Chem Soc Rev, 2024, 53(23): 11303-11320.
doi: 10.1039/d4cs00238e pmid: 39436264 |
| [10] |
Papenfort K, Storz G. Insights into bacterial metabolism from small RNAs[J]. Cell Chem Biol, 2024, 31(9): 1571-1577.
doi: 10.1016/j.chembiol.2024.07.002 pmid: 39094580 |
| [11] |
Yang Y, Wang L, Liu L, et al. Small noncoding RNA in Streptococci: From regulatory functions to drug development[J]. Mol Oral Microbiol, 2023, 38(4): 251-258.
doi: 10.1111/omi.v38.4 |
| [12] |
Krieger MC, Merritt J, Raghavan R. Genome-wide identification of novel sRNAs in Streptococcus mutans[J]. J Bacteriol, 2022, 204(4): e0057721.
doi: 10.1128/jb.00577-21 |
| [13] |
Drummond IY, DePaolo A, Krieger M, et al. Small regulatory RNAs are mediators of the Streptococcus mutans SloR regulon[J]. J Bacteriol, 2023, 205(9): e0017223.
doi: 10.1128/jb.00172-23 |
| [14] |
Li J, Ma QZ, Huang J, et al. Small RNA SmsR1 modulates acidogenicity and cariogenic virulence by affecting protein acetylation in Streptococcus mutans[J]. PLoS Pathog, 2024, 20(4): e1012147.
doi: 10.1371/journal.ppat.1012147 |
| [15] |
Lei L, Zhang B, Mao M, et al. Carbohydrate metabolism regulated by antisense vicR RNA in cariogenicity[J]. J Dent Res, 2020, 99(2): 204-213.
doi: 10.1177/0022034519890570 pmid: 31821772 |
| [16] |
Silverman A, Melamed S. Biological insights from RNA-RNA interactomes in bacteria, as revealed by RIL-seq[J]. Methods Mol Biol, 2025, 2866: 189-206.
doi: 10.1007/978-1-0716-4192-7_11 pmid: 39546204 |
| [17] |
Wang TB, Tague N, Whelan SA, et al. Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites[J]. Nucleic Acids Res, 2021, 49(2): 1163-1172.
doi: 10.1093/nar/gkaa1234 pmid: 33367820 |
| [18] |
Sun YT, Chen H, Xu MM, et al. Exopolysaccharides metabolism and cariogenesis of Streptococcus mutans biofilm regulated by antisense vicK RNA[J]. J Oral Microbiol, 2023, 15(1): 2204250.
doi: 10.1080/20002297.2023.2204250 |
| [19] |
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products[J]. Wiley Interdiscip Rev RNA, 2022, 13(3): e1696.
doi: 10.1002/wrna.v13.3 |
| [20] |
Yin LP, Zhu WH, Chen DR, et al. Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in Streptococcus mutans[J]. Microbiologyopen, 2020, 9(9): e1096.
doi: 10.1002/mbo3.v9.9 |
| [21] | 胡桐楠, 郑伟, 李少华, 等. 不同pH条件下高低致龋性变异链球菌sRNA SpR19及其潜在靶标GroEL的表达变化[J]. 南方医科大学学报, 2017, 37(6): 802-806. |
| [22] |
Diallo I, Ho J, Lalaouna D, et al. RNA sequencing unveils very small RNAs with potential regulatory functions in bacteria[J]. Front Mol Biosci, 2022, 9: 914991.
doi: 10.3389/fmolb.2022.914991 |
| [23] |
Ferrara S, Brignoli T, Bertoni G. Little reason to call them small noncoding RNAs[J]. Front Microbiol, 2023, 14: 1191166.
doi: 10.3389/fmicb.2023.1191166 |
| [24] |
Kotsira V, Skoufos G, Alexiou A, et al. Agnodice: Indexing experimentally supported bacterial sRNA-RNA interactions[J]. mBio, 2024, 15(3): e0301023.
doi: 10.1128/mbio.03010-23 |
| [25] | Mao MY, Yang YM, Li KZ, et al. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-size small RNAs in Streptococcus mutans[J]. Front Microbiol, 2016, 7: 687. |
| [26] |
Sinha NK, Iwasa J, Shen PS, et al. Dicer uses distinct modules for recognizing dsRNA termini[J]. Science, 2018, 359(6373): 329-334.
doi: 10.1126/science.aaq0921 pmid: 29269422 |
| [27] |
Tian YT, Zhang Y, Zhang MJ, et al. Antisense vicR-loaded dendritic mesoporous silica nanoparticles regulate the biofilm organization and cariogenicity of Streptococcus mutans[J]. Int J Nanomedicine, 2022, 17: 1255-1272.
doi: 10.2147/IJN.S334785 |
| [28] |
Lei L, Zhang Y, Xu YC, et al. Spermine-starch nanoparticles with antisense vicR suppress Streptococcus mutans cariogenicity[J]. J Mater Chem B, 2023, 11(25): 5752-5766.
doi: 10.1039/d2tb02628g pmid: 37219356 |
| [29] |
Lejars M, Hajnsdorf E. Bacterial RNase Ⅲ: Targets and physiol-ogy[J]. Biochimie, 2024, 217: 54-65.
doi: 10.1016/j.biochi.2023.07.009 |
| [30] |
Lei L, Stipp RN, Chen T, et al. Activity of Streptococcus mutans VicR is modulated by antisense RNA[J]. J Dent Res, 2018, 97(13): 1477-1484.
doi: 10.1177/0022034518781765 pmid: 29969955 |
| [31] |
Senadheera MD, Guggenheim B, Spatafora GA, et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development[J]. J Bacteriol, 2005, 187(12): 4064-4076.
pmid: 15937169 |
| [32] |
Lu YY, Zhang HY, Li M, et al. The rnc gene regulates the microstructure of exopolysaccharide in the biofilm of Streptococcus mutans through the β-monosaccharides[J]. Caries Res, 2021, 55(5): 534-545.
doi: 10.1159/000518462 |
| [33] |
Zhang AQ, Chen JM, Gong T, et al. Deletion of csn2 gene affects acid tolerance and exopolysaccharide synthesis in Streptococcus mutans[J]. Mol Oral Microbiol, 2020, 35(5): 211-221.
doi: 10.1111/omi.v35.5 |
| [34] |
Kang DY, Kim A, Kim JN. CcpA and CodY regulate CRISPR-cas system of Streptococcus mutans[J]. Microbiol Spectr, 2023, 11(4): e0182623.
doi: 10.1128/spectrum.01826-23 |
| [35] |
Mosterd C, Moineau S. Insight into crRNA processing in Streptococcus mutans P42S and application of SmutCas9 in genome editing[J]. Int J Mol Sci, 2025, 26(5): 2005.
doi: 10.3390/ijms26052005 |
| [36] |
Xu ZL, Chen SZ, Wu WY, et al. Type I CRISPR-Cas-mediated microbial gene editing and regulation[J]. AIMS Microbiol, 2023, 9(4): 780-800.
doi: 10.3934/microbiol.2023040 pmid: 38173969 |
| [37] | Mosterd C, Moineau S. Characterization of a type Ⅱ-a CRISPR-cas system in Streptococcus mutans[J]. mSphere, 2020, 5(3): e00235-20. |
| [38] |
Gong T, Tang BY, Zhou XD, et al. Genome editing in Streptococcus mutans through self-targeting CRISPR arrays[J]. Mol Oral Microbiol, 2018, 33(6): 440-449.
doi: 10.1111/omi.12247 pmid: 30329221 |
| [39] |
Tang BY, Gong T, Zhou XD, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity[J]. Arch Oral Biol, 2019, 99: 190-197.
doi: 10.1016/j.archoralbio.2019.01.016 |
| [40] |
Serbanescu MA, Cordova M, Krastel K, et al. Role of the Streptococcus mutans CRISPR-cas systems in immunity and cell physiology[J]. J Bacteriol, 2015, 197(4): 749-761.
doi: 10.1128/JB.02333-14 pmid: 25488301 |
| [41] |
Kim P, Sanchez AM, Penke TJR, et al. Safety, pharmacokine-tics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): The randomised, open-label, first part of a two-part phase 2 trial[J]. Lancet Infect Dis, 2024, 24(12): 1319-1332.
doi: 10.1016/S1473-3099(24)00424-9 |
| [42] |
Lai YJ, Yakhnin H, Pannuri A, et al. CsrA regulation via binding to the base-pairing small RNA Spot 42[J]. Mol Microbiol, 2022, 117(1): 32-53.
doi: 10.1111/mmi.v117.1 |
| [43] |
Svensson SL, Chao YJ. RNase Ⅲ-CLASH brings bacterial RNA networks into focus[J]. Trends Microbiol, 2022, 30(12): 1125-1127.
doi: 10.1016/j.tim.2022.09.012 pmid: 36184448 |
| [44] |
Lu YY, Lei L, Deng YL, et al. RNase Ⅲ coding genes modulate the cross-Kingdom biofilm of Streptococcus mutans and Candida albicans[J]. Front Microbiol, 2022, 13: 957879.
doi: 10.3389/fmicb.2022.957879 |
| [45] | Weeks R, Ostermeier M. Fitness and functional landscapes of the E. coli RNase Ⅲ gene rnc[J]. Mol Biol Evol, 2023, 40(3): msad047. |
| [46] |
Mediati DG, Wong JL, Gao W, et al. RNase Ⅲ-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3'UTR required for intermediate vancomycin resistance[J]. Nat Commun, 2022, 13(1): 3558.
doi: 10.1038/s41467-022-31177-8 pmid: 35732665 |
| [47] |
McKellar SW, Ivanova I, Arede P, et al. RNase Ⅲ CLASH in MRSA uncovers sRNA regulatory networks coupling metabolism to toxin expression[J]. Nat Commun, 2022, 13(1): 3560.
doi: 10.1038/s41467-022-31173-y pmid: 35732654 |
| [48] |
Jagtap U, Anderson ES, Slack FJ. The emerging value of circular noncoding RNA research in cancer diagnosis and treatment[J]. Cancer Res, 2023, 83(6): 809-813.
doi: 10.1158/0008-5472.CAN-22-3014 pmid: 36919419 |
| [49] |
Yu S, Xu MM, Wang Z, et al. S. mutans antisense vicK RNA over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses oral biofilms and protects enamel hardness in extracted human teeth[J]. Pathogens, 2024, 13(8): 707.
doi: 10.3390/pathogens13080707 |
| [50] |
Chi HT, White MF. RNA processing by the CRISPR-associated NYN ribonuclease[J]. Biochem J, 2024, 481(12): 793-804.
doi: 10.1042/BCJ20240151 pmid: 38785320 |
| [51] |
Zakrzewska M, Burmistrz M. Mechanisms regulating the CRISPR-cas systems[J]. Front Microbiol, 2023, 14: 1060337.
doi: 10.3389/fmicb.2023.1060337 |
| [52] |
Navarro C, Díaz MP, Duran P, et al. CRISPR-cas systems: A functional perspective and innovations[J]. Int J Mol Sci, 2025, 26(8): 3645.
doi: 10.3390/ijms26083645 |
| [53] |
Lemak S, Serbanescu MA, Khusnutdinova AN, et al. Structural and biochemical insights into CRISPR RNA processing by the Cas5c ribonuclease SMU1763 from Streptococcus mutans[J]. J Biol Chem, 2021, 297(5): 101251.
doi: 10.1016/j.jbc.2021.101251 |
| [1] | 常兴桃, 胡佳心, 孙江龄, 张吉琴, 陈贤润, 白国辉, 罗祎. 天然抗菌生物材料对变异链球菌及其生物膜的抑制作用[J]. 口腔医学, 2025, 45(3): 235-240. |
| [2] | 朱晗, 方湲锴, 曹海涛, 吴戎, 裘迪红. 植物乳杆菌漱口水防龋效果的初步研究[J]. 口腔医学, 2025, 45(11): 849-853. |
| [3] | 潘乐, 段沁颜, 程俊翔, 洪锋, 胡亚军. 微环境下lncRNA介导miRNA调控牙周膜干细胞成骨分化的研究进展[J]. 口腔医学, 2024, 44(3): 232-236. |
| [4] | 张伦齐,王琨,张凌琳. 蜂胶对龋病防治作用的研究进展[J]. 口腔医学, 2023, 43(4): 371-375. |
| [5] | 张校晨, 孙唯夫, 方世殊, 秦文, 金作林. m6A甲基化修饰参与成骨分化调控的研究进展[J]. 口腔医学, 2022, 42(7): 655-658. |
| [6] | 袁文锦, 韩佳岐, 杨婕, 董宁, 姜秋. 人工合成抗菌肽在龋病防治中的研究进展[J]. 口腔医学, 2022, 42(12): 1129-1133. |
| [7] | 顾婷立, 刘亚华, 钱靓, 章茜. LncRNA MALAT1调节miR-383-5p/SOCS3轴对人牙周膜干细胞的影响[J]. 口腔医学, 2022, 42(11): 966-973. |
| [8] | 靳也 郭杰 魏福兰. 环状RNA的研究进展[J]. , 2019, 39(5): 450-454. |
| [9] | 房宏志 喻譞 田媛媛 杨英明 杨惠 胡涛. 不同蔗糖浓度下外源性右旋糖酐酶协同氟化钠对变异链球菌成熟生物膜和胞外多糖的作用研究[J]. , 2017, 37(7): 583-587. |
| [10] | 魏玉 孙瑶. 长链非编码RNA在骨发育中作用的研究进展[J]. , 2017, 37(3): 271-275. |
| [11] | 肖琳琳 肖茜文 管晓燕 刘建国. 蛋白质组学在龋病研究中的应用[J]. , 2016, 36(1): 90-93. |
| [12] | 冷秀梅 魏睦新. 涎腺唾液液体分泌的调控机制及研究进展[J]. , 2014, 34(8): 631-634. |
| [13] | 李惠山,吴海燕,刘红彦. 不同氟处理方法 对托槽抗剪强度影响的对比研究[J]. , 2008, 28(4): 186-188. |
| [14] | 孙建光;高俊莲. 乳酸菌对糖和糖醇的分解代谢及其致龋性[J]. , 2007, 27(7): 384-386. |
| [15] | 王金华,林居红. 变形链球菌的致龋性及鉴别的研究进展[J]. , 2004, 24(4): 247-249. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
苏公网安备32010602011670号