[1] |
Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition[J]. J Clin Periodontol, 2018, 45(Suppl 20): S149-S161.
|
[2] |
Tonetti MS, Sanz M. Implementation of the new classification of periodontal diseases: Decision-making algorithms for clinical practice and education[J]. J Clin Periodontol, 2019, 46(4): 398-405.
doi: 10.1111/jcpe.13104
pmid: 30883878
|
[3] |
Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions-Introduction and key changes from the 1999 classification[J]. J Periodontol, 2018, 89(Suppl 1): S1-S8.
|
[4] |
刘飞, 张俊然, 杨豪. 基于深度学习的医学图像识别研究进展[J]. 中国生物医学工程学报, 2018, 37(1): 86-94.
|
[5] |
韩生伟, 韩伟. 人工智能技术在口腔医学领域的应用进展[J]. 口腔医学研究, 2020, 36(6): 519-522.
doi: 10.13701/j.cnki.kqyxyj.2020.06.005
|
[6] |
杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36-40.
|
[7] |
Hallou A, Yevick HG, Dumitrascu B, et al. Deep learning for bioimage analysis in developmental biology[J]. Development, 2021, 148(18): dev199616.
|
[8] |
Theodosiou AA, Read RC. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician[J]. J Infect, 2023, 87(4): 287-294.
|
[9] |
Zheng QH, Gao Y, Zhou MQ, et al. Semi or fully automatic tooth segmentation in CBCT images: A review[J]. Peer J Comput Sci, 2024, 10: e1994.
|
[10] |
白玉杰. 基于机器学习的牙周影像识别及辅助诊断技术研究[D]. 南昌: 南昌大学, 2023.
|
[11] |
Ossowska A, Kusiak A, Świetlik D. Artificial intelligence in dentistry-narrative review[J]. Int J Environ Res Public Health, 2022, 19(6): 3449.
|
[12] |
Polizzi A, Quinzi V, Ronsivalle V, et al. Tooth automatic segmentation from CBCT images: A systematic review[J]. Clin Oral Investig, 2023, 27(7): 3363-3378.
|
[13] |
Xiang BL, Lu JY, Yu JY. Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and meta-analysis[J]. J Dent, 2024, 146: 105064.
|
[14] |
Duan W, Chen YF, Zhang Q, et al. Refined tooth and pulp segmentation using U-Net in CBCT image[J]. Dentomaxillofac Radiol, 2021, 50(6): 20200251.
|
[15] |
Li MX, Wang ZW, Chen XR, et al. Application of deep learning in isolated tooth identification[J]. BMC Oral Health, 2024, 24(1): 500.
|
[16] |
Altındağ A, Bahrilli S, Çelik Ö, et al. Tooth numbering and classification on bitewing radiographs: An artificial intelligence pilot study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2024, 137(6): 679-689.
|
[17] |
Büttner M, Schneider L, Krasowski A, et al. Conquering class imbalances in deep learning-based segmentation of dental radiographs with different loss functions[J]. J Dent, 2024, 148: 105063.
|
[18] |
Chen CC, Wu YF, Aung LM, et al. Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence[J]. J Dent Sci, 2023, 18(3): 1301-1309.
|
[19] |
Lee JH, Kim DH, Jeong SN, et al. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm[J]. J Periodontal Implant Sci, 2018, 48(2): 114-123.
|
[20] |
Ezhov M, Gusarev M, Golitsyna M, et al. Clinically applicable artificial intelligence system for dental diagnosis with CBCT[J]. Sci Rep, 2021, 11(1): 15006.
doi: 10.1038/s41598-021-94093-9
pmid: 34294759
|
[21] |
Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss[J]. Sci Rep, 2019, 9(1): 8495.
doi: 10.1038/s41598-019-44839-3
pmid: 31186466
|
[22] |
Kim J, Lee HS, Song IS, et al. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs[J]. Sci Rep, 2019, 9(1): 17615.
doi: 10.1038/s41598-019-53758-2
pmid: 31772195
|
[23] |
Danks RP, Bano S, Orishko A, et al. Automating periodontal bone loss measurement via dental landmark localisation[J]. Int J Comput Assist Radiol Surg, 2021, 16(7): 1189-1199.
|
[24] |
Chang HJ, Lee SJ, Yong TH, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis[J]. Sci Rep, 2020, 10(1): 7531.
|
[25] |
Lee CT, Kabir T, Nelson J, et al. Use of the deep learning approach to measure alveolar bone level[J]. J Clin Periodontol, 2022, 49(3): 260-269.
|
[26] |
Jiang LH, Chen DQ, Cao Z, et al. A two-stage deep learning architecture for radiographic staging of periodontal bone loss[J]. BMC Oral Health, 2022, 22(1): 106.
doi: 10.1186/s12903-022-02119-z
pmid: 35365122
|
[27] |
张庆. X射线成像技术在口腔临床中的应用[J]. 中国医疗设备, 2019, 34(11): 161-164.
|
[28] |
杨艺强, 刘琪, 庄东鹏, 等. 数字化根尖片、曲面断层片、CBCT测量牙齿长度准确性的比较研究[J]. 临床放射学杂志, 2014, 33(9): 1434-1437.
|
[29] |
Sameshima GT, Asgarifar KO. Assessment of root resorption and root shape: Periapical vs panoramic films[J]. Angle Orthod, 2001, 71(3): 185-189.
doi: 10.1043/0003-3219(2001)071<0185:AORRAR>2.0.CO;2
pmid: 11407770
|
[30] |
Persson RE, Tzannetou S, Feloutzis AG, et al. Comparison between panoramic and intra-oral radiographs for the assessment of alveolar bone levels in a periodontal maintenance population[J]. J Clin Periodontol, 2003, 30(9): 833-839.
doi: 10.1034/j.1600-051x.2003.00379.x
pmid: 12956660
|
[31] |
Kurt-Bayrakdar S, Bayrakdar İŞ, Yavuz MB, et al. Detection of periodontal bone loss patterns and furcation defects from panoramic radiographs using deep learning algorithm: A retrospective study[J]. BMC Oral Health, 2024, 24(1): 155.
doi: 10.1186/s12903-024-03896-5
pmid: 38297288
|
[32] |
王凯利, 叶泽林, 游梦, 等. 国内外口腔锥形束CT临床实践标准化文件的内容及制定方法[J]. 口腔医学, 2023, 43(11): 961-967.
|
[33] |
Wang RY, Wang RX, Yang T, et al. Deep learning improves prediction of periodontal therapy effectiveness in Chinese patients[J]. J Periodontal Res, 2023, 58(3): 520-528.
doi: 10.1111/jre.13122
pmid: 37042770
|
[34] |
Xu XJ, Liu C, Zheng YY. 3D tooth segmentation and labeling using deep convolutional neural networks[J]. IEEE Trans Vis Comput Graph, 2019, 25(7): 2336-2348.
doi: 10.1109/TVCG.2018.2839685
pmid: 29994311
|
[35] |
刘强冬. 基于卷积神经网络的牙周炎影像辅助诊断研究[D]. 南昌: 南昌大学医学部, 2022.
|