Stomatology ›› 2024, Vol. 44 ›› Issue (8): 624-629.doi: 10.13591/j.cnki.kqyx.2024.08.012
• Review • Previous Articles Next Articles
ZHU Shasha,TIAN Weidong,GUO Shujuan()
Received:
2023-11-28
Online:
2024-08-28
Published:
2024-08-06
CLC Number:
ZHU Shasha, TIAN Weidong, GUO Shujuan. Different types of programmed cell death in periodontitis[J]. Stomatology, 2024, 44(8): 624-629.
[1] |
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
doi: 10.1038/nrdp.2017.38 pmid: 28805207 |
[2] | Chen LY, Min JX, Wang FD. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 378. |
[3] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541.
doi: 10.1038/s41418-017-0012-4 pmid: 29362479 |
[4] | Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis[J]. Free Radic Biol Med, 2019, 133: 130-143. |
[5] |
Snyder AG, Oberst A. The antisocial network: Cross talk between cell death programs in host defense[J]. Annu Rev Immunol, 2021, 39: 77-101.
doi: 10.1146/annurev-immunol-112019-072301 pmid: 33441019 |
[6] |
Song B, Zhou T, Yang WL, et al. Programmed cell death in periodontitis: Recent advances and future perspectives[J]. Oral Dis, 2017, 23(5): 609-619.
doi: 10.1111/odi.12574 pmid: 27576069 |
[7] | Bhat TA, Chaudhary AK, Kumar S, et al. Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer[J]. Biochim Biophys Acta Rev Cancer, 2017, 1867(1): 58-66. |
[8] | Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100. |
[9] |
Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease[J]. Immunity, 2019, 50(6): 1352-1364.
doi: S1074-7613(19)30240-7 pmid: 31216460 |
[10] | Miller DR, Cramer SD, Thorburn A. The interplay of autophagy and non-apoptotic cell death pathways[M]//International Review of Cell and Molecular Biology. Amsterdam:Elsevier, 2020: 159-187. |
[11] | Sun LM, Wang HY, Wang ZG, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell, 2012, 148(1/2): 213-227. |
[12] | Nishimura T, Tooze SA. Emerging roles of ATG proteins and membrane lipids in autophagosome formation[J]. Cell Discov, 2020, 6(1): 32. |
[13] |
Noda NN, Inagaki F. Mechanisms of autophagy[J]. Annu Rev Biophys, 2015, 44: 101-122.
doi: 10.1146/annurev-biophys-060414-034248 pmid: 25747593 |
[14] | Shi JJ, Zhao Y, Wang YP, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521): 187-192. |
[15] | Hoare A, Soto C, Rojas-Celis V, et al. Chronic inflammation as a link between periodontitis and carcinogenesis[J]. Mediators Inflamm, 2019, 2019: 1029857. |
[16] | Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371): 117-121. |
[17] |
Aglietti RA, Dueber EC. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions[J]. Trends Immunol, 2017, 38(4): 261-271.
doi: S1471-4906(17)30015-7 pmid: 28196749 |
[18] | Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. |
[19] |
Liu ZH, Wang CP, Yang J, et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization[J]. Immunity, 2019, 51(1): 43-49.e4.
doi: S1074-7613(19)30197-9 pmid: 31097341 |
[20] | Thiriveedi VR, Mattam U, Pattabhi P, et al. Glutathionylated and Fe-S cluster containing hMIA40 (CHCHD4) regulates ROS and mitochondrial complex Ⅲ and Ⅳ activities of the electron transport chain[J]. Redox Biol, 2020, 37: 101725. |
[21] |
Wang LY, Liu YC, Du TT, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2): 662-675.
doi: 10.1038/s41418-019-0380-z pmid: 31273299 |
[22] | Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. |
[23] |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
doi: 10.1126/science.abf0529 pmid: 35298263 |
[24] | Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19(8): 2175-2195. |
[25] |
Ozkocer O, Ozkocer SE, Guler B, et al. Immunohistochemical analysis with apoptosis and autophagy markers in periodontitis and peri-implantitis: Clinical comparative study[J]. J Periodontal Res, 2023, 58(2): 456-464.
doi: 10.1111/jre.13106 pmid: 36755315 |
[26] |
Zhang JH, Dong XH, Yan QQ, et al. Galectin-1 inhibited LPS-induced autophagy and apoptosis of human periodontal ligament stem cells[J]. Inflammation, 2021, 44(4): 1302-1314.
doi: 10.1007/s10753-021-01417-y pmid: 33566256 |
[27] |
Zhou Y, Zhang HY, Zhang G, et al. Calcitonin gene-related peptide reduces Porphyromonas gingivalis LPS-induced TNF-α release and apoptosis in osteoblasts[J]. Mol Med Rep, 2018, 17(2): 3246-3254.
doi: 10.3892/mmr.2017.8205 pmid: 29257246 |
[28] |
Feng H, Li ZY, Du J, et al. Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway[J]. Cell Death Discov, 2018, 4: 47.
doi: 10.1038/s41420-018-0050-9 pmid: 29707240 |
[29] | Liu Q, Guo SJ, Huang YL, et al. Inhibition of TRPA1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via PERK/eIF2α/ATF-4/CHOP signal pathway[J]. Oxid Med Cell Longev, 2022, 2022: 4107915. |
[30] |
Akhondian S, Fatemi K, Ebrahim Zadeh N, et al. Necroptosis has a crucial role in the development of chronic periodontitis[J]. J Oral Biol Craniofac Res, 2023, 13(4): 465-470.
doi: 10.1016/j.jobcr.2023.05.010 pmid: 37266108 |
[31] | He JF, Zheng ZL, Li SJ, et al. Identification and assessment of differentially expressed necroptosis long non-coding RNAs associated with periodontitis in human[J]. BMC Oral Health, 2023, 23(1): 632. |
[32] | Geng FX, Liu JC, Yin CC, et al. Porphyromonas gingivalis lipopolysaccharide induced RIPK3/MLKL-mediated necroptosis of oral epithelial cells and the further regulation in macrophage activation[J]. J Oral Microbiol, 2022, 14(1): 2041790. |
[33] | Zhang KY, Chen XX, Zhou R, et al. Inhibition of gingival fibroblast necroptosis mediated by RIPK3/MLKL attenuates periodontitis[J]. J Clin Periodontol, 2023, 50(9): 1264-1279. |
[34] | Tan LY, Chan WC, Zhang J, et al. Regulation of RIP1-mediated necroptosis via necrostatin-1 in periodontitis[J]. J Periodontal Res, 2023, 58(5): 919-931. |
[35] | Yang YN, Wang LX, Zhang HB, et al. Mixed lineage kinase domain-like pseudokinase-mediated necroptosis aggravates periodontitis progression[J]. J Mol Med, 2022, 100(1): 77-86. |
[36] | Hagio-Izaki K, Yasunaga M, Yamaguchi M, et al. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus[J]. BMC Cell Biol, 2018, 19(1): 18. |
[37] | Liu J, Wang XX, Zheng M, et al. Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway[J]. Life Sci, 2018, 211: 133-139. |
[38] |
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10): 722-737.
doi: 10.1038/nri3532 pmid: 24064518 |
[39] |
Morimoto Y, Kawahara KI, Tancharoen S, et al. Tumor necrosis factor-alpha stimulates gingival epithelial cells to release high mobility-group box 1[J]. J Periodontal Res, 2008, 43(1): 76-83.
pmid: 18067550 |
[40] | Evans M, Murofushi T, Tsuda H, et al. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death[J]. JPeriodontal Res, 2017, 52(3): 522-531. |
[41] |
He SS, Zhou Q, Luo BY, et al. Chloroquine and 3-methyladenine attenuates periodontal inflammation and bone loss in experimental periodontitis[J]. Inflammation, 2020, 43(1): 220-230.
doi: 10.1007/s10753-019-01111-0 pmid: 31720989 |
[42] | Yang C, Tao HQ, Zhang HF, et al. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss[J]. Autophagy, 2022, 18(12): 2817-2829. |
[43] | Vidoni C, Ferraresi A, Secomandi E, et al. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells[J]. Cell Commun Signal, 2019, 17(1): 98. |
[44] | Yin Y, Tian BM, Li X, et al. Gold nanoparticles targeting the autophagy-lysosome system to combat the inflammation-compromised osteogenic potential of periodontal ligament stem cells: From mechanism to therapy[J]. Biomaterials, 2022, 288: 121743. |
[45] | Li YY, Li BS, Liu YJ, et al. Porphyromonas gingivalis lipopolysaccharide affects oral epithelial connections via pyroptosis[J]. J Dent Sci, 2021, 16(4): 1255-1263. |
[46] | Xu WZ, Zhou W, Wang HZ, et al. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis[J]. Adv Protein Chem Struct Biol, 2020, 120: 45-84. |
[47] | Jun HK, Jung YJ, Ji S, et al. Caspase-4 activation by a bacterial surface protein is mediated by cathepsin G in human gingival fibroblasts[J]. Cell Death Differ, 2018, 25(2): 380-391. |
[48] | Fleetwood AJ, Lee MKS, Singleton W, et al. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles[J]. Front Cell Infect Microbiol, 2017, 7: 351. |
[49] |
Liu J, Wang YX, Meng HX, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis[J]. J Clin Periodontol, 2019, 46(9): 894-907.
doi: 10.1111/jcpe.13162 pmid: 31241781 |
[50] | Zhang XL, He S, Lu WY, et al. Glycogen synthase kinase-3β (GSK-3β) deficiency inactivates the NLRP3 inflammasome-mediated cell pyroptosis in LPS-treated periodontal ligament cells (PDLCs)[J]. In Vitro Cell Dev Biol Anim, 2021, 57(4): 404-414. |
[51] | Rocha FRG, Delitto AE, de Souza JAC, et al. Relevance of caspase-1 and Nlrp3 inflammasome on inflammatory bone resorption in A murine model of periodontitis[J]. Sci Rep, 2020, 10(1): 7823. |
[52] | Chen YY, Yang QD, Lv CH, et al. NLRP3 regulates alveolar bone loss in ligature-induced periodontitis by promoting osteoclastic differentiation[J]. Cell Prolif, 2021, 54(2): e12973. |
[53] | Liu X, Zhang ZB, Ruan JB, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158. |
[54] | Sollberger G, Choidas A, Burn GL, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps[J]. Sci Immunol, 2018, 3(26): eaar6689. |
[55] | Wu DL, Lin ZS, Zhang SW, et al. Decreased hemoglobin concentration and iron metabolism disorder in periodontitis: Systematic review and meta-analysis[J]. Front Physiol, 2020, 10: 1620. |
[56] | Guo LN, Yang YZ, Feng YZ. Serum and salivary ferritin and Hepcidin levels in patients with chronic periodontitis and type 2 diabetes mellitus[J]. BMC Oral Health, 2018, 18(1): 63. |
[57] | Han PP, Liu TQ, Vaquette C, et al. Iron accumulation is associated with periodontal destruction in a mouse model of HFE-related haemochromatosis[J]. J Periodontal Res, 2022, 57(2): 294-304. |
[58] | Yang WY, Meng X, Wang YR, et al. PRDX6 alleviates lipopolysaccharide-induced inflammation and ferroptosis in periodontitis[J]. Acta Odontol Scand, 2022, 80(7): 535-546. |
[59] |
Chung JH, Kim YS, Noh K, et al. Deferoxamine promotes osteoblastic differentiation in human periodontal ligament cells via the nuclear factor erythroid 2-related factor-mediated antioxidant signaling pathway[J]. J Periodontal Res, 2014, 49(5): 563-573.
doi: 10.1111/jre.12136 pmid: 24111577 |
[60] |
Takedachi M, Yamamoto S, Kawasaki K, et al. Reciprocal role of PLAP-1 in HIF-1α-mediated responses to hypoxia[J]. J Periodontal Res, 2022, 57(3): 470-478.
doi: 10.1111/jre.12976 pmid: 35138637 |
[61] | Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J]. Nat Rev Mol Cell Biol, 2020, 21(5): 268-283. |
[62] | Zhao YH, Li J, Guo W, et al. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy[J]. Cell Death Discov, 2020, 6(1): 119. |
[63] | Romano F, Castiblanco A, Spadotto F, et al. ICP-mass-spectrometry ionic profile of whole saliva in patients with untreated and treated periodontitis[J]. Biomedicines, 2020, 8(9): 354. |
[64] |
Thomas B, Prasad BR, Kumari NS, et al. A comparative evaluation of the micronutrient profile in the serum of diabetes mellitus Type Ⅱ patients and healthy individuals with periodontitis[J]. J Indian Soc Periodontol, 2019, 23(1): 12-20.
doi: 10.4103/jisp.jisp_398_18 pmid: 30692737 |
[65] | Liu SY, Ge JY, Chu YT, et al. Identification of hub cuproptosis related genes and immune cell infiltration characteristics in periodontitis[J]. Front Immunol, 2023, 14: 1164667. |
[66] | Chang CH, Han ML, Teng NC, et al. Cigarette smoking aggravates the activity of periodontal disease by disrupting redox homeostasis-an observational study[J]. Sci Rep, 2018, 8(1): 11055. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||