[1] |
Peres MA, Macpherson LMD, Weyant RJ, et al. Oral diseases: A global public health challenge[J]. Lancet, 2019, 394(10194):249-260.
doi: S0140-6736(19)31146-8
pmid: 31327369
|
[2] |
Pitts NB, Twetman S, Fisher J, et al. Understanding dental caries as a non-communicable disease[J]. Br Dent J, 2021, 231(12): 749-753.
|
[3] |
Nyvad B, Crielaard W, Mira A, et al. Dental caries from a molecular microbiological perspective[J]. Caries Res, 2013, 47(2): 89-102.
doi: 10.1159/000345367
pmid: 23207320
|
[4] |
Moores CJ, Kelly SAM, Moynihan PJ. Systematic review of the effect on caries of sugars intake: Ten-year update[J]. J Dent Res, 2022, 101(9): 1034-1045.
|
[5] |
Sheiham A, James WP. A new understanding of the relationship between sugars, dental caries and fluoride use: Implications for limits on sugars consumption[J]. Public Health Nutr, 2014, 17(10): 2176-2184.
doi: 10.1017/S136898001400113X
pmid: 24892213
|
[6] |
Valan AS, Krithikadatta J, Sathish S. Influence of sucrose and Arenga pinnata solutions on enamel surface demineralization: A profilometric study[J]. Cureus, 2023, 15(9): e44592.
|
[7] |
Cury JA, Rebelo MA, Del Bel Cury AA, et al. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose[J]. Caries Res, 2000, 34(6): 491-497.
pmid: 11093024
|
[8] |
Belibasakis GN, Bostanci N, Marsh PD, et al. Applications of the oral microbiome in personalized dentistry[J]. Arch Oral Biol, 2019, 104: 7-12.
doi: S0003-9969(19)30211-0
pmid: 31153099
|
[9] |
Grier A, Myers JA, O'Connor TG, et al. Oral microbiota composition predicts early childhood caries onset[J]. J Dent Res, 2021, 100(6): 599-607.
doi: 10.1177/0022034520979926
pmid: 33356775
|
[10] |
Poorni S, Nivedhitha MS, Srinivasan MR, et al. Estimating genotypic diversity of Streptococcus mutans isolated from caries-active and caries-free individuals among Indian population[J]. Cureus, 2022, 14(2): e22436.
|
[11] |
Navazesh M. Methods for collecting saliva[J]. Ann N Y Acad Sci, 1993, 694: 72-77.
|
[12] |
de Sousa ET, Lima-Holanda AT, Nobre-Dos-Santos M. Changes in the salivary electrolytic dynamic after sucrose exposure in children with Early Childhood Caries[J]. Sci Rep, 2020, 10(1): 4146.
|
[13] |
Chen X, Hu XY, Fang J, et al. Association of oral microbiota profile with sugar-sweetened beverages consumption in school-aged children[J]. Int J Food Sci Nutr, 2022, 73(1): 82-92.
|
[14] |
Tian J, Qin M, Ma WL, et al. Microbiome interaction with sugar plays an important role in relapse of childhood caries[J]. Biochem Biophys Res Commun, 2015, 468(1/2): 294-299.
|
[15] |
Keller MK, Kressirer CA, Belstrøm D, et al. Oral microbial profiles of individuals with different levels of sugar intake[J]. J Oral Microbiol, 2017, 9(1): 1355207.
|
[16] |
任雯, 赵梅, 李杰, 等. 青少年唾液菌群结构的分析研究[J]. 北京口腔医学, 2019, 27(5): 256-260.
|
[17] |
姚雅男, 梁宏雁, 吉俊盈, 等. 16S rRNA高通量测序技术分析肾移植患者唾液菌群分布特征[J]. 北京口腔医学, 2023, 31(3): 201-204.
|
[18] |
Xiao CC, Ran SJ, Huang ZW, et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Front Microbiol, 2016, 7: 1145.
doi: 10.3389/fmicb.2016.01145
pmid: 27499752
|
[19] |
Esberg A, Eriksson L, Hasslöf P, et al. Using oral microbiota data to design a short sucrose intake index[J]. Nutrients, 2021, 13(5): 1400.
|
[20] |
Esberg A, Haworth S, Hasslöf P, et al. Oral microbiota profile associates with sugar intake and taste preference genes[J]. Nutrients, 2020, 12(3): 681.
|
[21] |
Minty M, Canceill T, Lê S, et al. Oral health and microbiota status in professional rugby players: A case-control study[J]. J Dent, 2018, 79: 53-60.
doi: S0300-5712(18)30547-5
pmid: 30292825
|
[22] |
Luppens SBI, Kara D, Bandounas L, et al. Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm[J]. Oral Microbiol Immunol, 2008, 23(3): 183-189.
|
[23] |
Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease[J]. Immunology, 2017, 151(4): 363-374.
|
[24] |
Teles FR, Teles RP, Uzel NG, et al. Early microbial succession in redeveloping dental biofilms in periodontal health and disease[J]. J Periodontal Res, 2012, 47(1): 95-104.
doi: 10.1111/j.1600-0765.2011.01409.x
pmid: 21895662
|
[25] |
Valm AM, Mark Welch JL, Rieken CW, et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging[J]. Proc Natl Acad Sci USA, 2011, 108(10): 4152-4157.
doi: 10.1073/pnas.1101134108
pmid: 21325608
|
[26] |
Mark Welch JL, Rossetti BJ, Rieken CW, et al. Biogeography of a human oral microbiome at the micron scale[J]. Proc Natl Acad Sci USA, 2016, 113(6): E791-E800.
|
[27] |
Kolenbrander PE, Palmer RJ Jr, Periasamy S, et al. Oral multispecies biofilm development and the key role of cell-cell distance[J]. Nat Rev Microbiol, 2010, 8(7): 471-480.
doi: 10.1038/nrmicro2381
pmid: 20514044
|
[28] |
Kolenbrander PE. Oral microbial communities: Biofilms, interactions, and genetic systems[J]. Annu Rev Microbiol, 2000, 54: 413-437.
pmid: 11018133
|
[29] |
Ammann TW, Belibasakis GN, Thurnheer T. Impact of early colonizers on in vitro subgingival biofilm formation[J]. PLoS One, 2013, 8(12): e83090.
|
[30] |
Ibrahim M, Subramanian A, Anishetty S. Comparative pan genome analysis of oral Prevotella species implicated in periodontitis[J]. Funct Integr Genomics, 2017, 17(5): 513-536.
|
[31] |
Sharma G, Garg N, Hasan S, et al. Prevotella: An insight into its characteristics and associated virulence factors[J]. Microb Pathog, 2022, 169: 105673.
|
[32] |
Hemadi AS, Huang RJ, Zhou Y, et al. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment[J]. Int J Oral Sci, 2017, 9(11): e1.
|