Stomatology ›› 2023, Vol. 43 ›› Issue (12): 1057-1064.doi: 10.13591/j.cnki.kqyx.2023.12.001
• Basic Research • Next Articles
QIU Tao1,HE Tao2,ZHANG Qiang2,XIAO Yuxuan1,GUO Weihua1,3()
Revised:
2023-08-01
Online:
2023-12-28
Published:
2023-12-28
Contact:
GUO Weihua
E-mail:guoweihua943019@163.com
CLC Number:
QIU Tao,HE Tao,ZHANG Qiang,XIAO Yuxuan,GUO Weihua. Automated photogrammetric analysis from a 2D photograph by convolutional neural network[J]. Stomatology, 2023, 43(12): 1057-1064.
Tab.1
Landmark definitions of frontage subset"
标志点 | 缩写 | 定义 中线标志点 |
---|---|---|
发际点 | Tr | 在前额中部的发际线上 |
软组织额点 | G' | 软组织额部之最前点 |
软组织鼻根点 | N' | 软组织侧面上相对的鼻根点/鼻额缝表面所覆盖之软组织最凹点 |
鼻顶(尖)点 | Prn | 鼻部软组织之最突点 |
鼻小柱点 | Cm | 鼻小柱之最前点/小柱顶部之间的中点,与相应鼻孔的顶部水平 |
鼻下(底)点 | Sn | 鼻小柱与上唇之连接点,代表上唇基底部的位置/鼻中隔下缘与上唇交界处的中点 |
上唇突点 | UI | 上唇之最突点 |
上唇下点/上口点 | Stms | 上唇(下)红缘之最(低)下点 |
下唇上点/下口点 | Stmi | 下唇(上)红缘之最高(上)点。在正常面形者中,此点常与上口点Stms重合在一起 |
下唇突点 | Ll | 下唇之最突点/下红线的中点 |
软组织颏下点 | Me' | 软组织颏部最低点 |
对称分布的标志点(l及r分别代表左侧及右侧标志点) 外眦点Exl,Exr眼裂的外连合 | ||
内眦点Enl,Enr眼裂内连合 | ||
眶上缘点Osl,Osr眉毛下缘的最高点 | ||
眶下缘点Orl,Orr眼眶下缘的最低点 | ||
颊点Chkl,Chkr在Camper平面与连接外眼角和唇连合的连线的交叉处 | ||
颧弓点Zyl,Zyr各颧弓最外侧点 | ||
鼻翼点All,Alr鼻翼等高线上的最侧点 | ||
鼻翼外侧点Acl,Acr鼻翼弯曲根部的最外侧点 | ||
鼻孔轴下点Itnl,Itnr鼻孔轴下点 | ||
鼻孔轴上点Stnl,Stnr鼻孔轴线上点 | ||
唇峰点Cphl,Cphr在人中的每个隆起边缘上恰好在朱红线上方 | ||
口裂点Chl,Chr唇连合 | ||
耳屏上缘点Tl,Tr在耳屏的上缘 | ||
耳廓最高点Sal,Sar耳廓游离缘的最高点 | ||
耳垂最后点Pal,Par耳垂游离缘的最后点 | ||
耳垂最下点Sbal,Sbar耳垂游离缘的最低点 | ||
下颌角Gol,Gor下颌角最外侧点 |
Tab.2
Landmark definitions of profile subset"
标志点 | 缩写 | 定义中线标志点 |
---|---|---|
发际点 | Tr | 在前额中部的发际线上 |
软组织额点 | G' | 软组织额部之最前点 |
软组织鼻根点 | N' | 软组织侧面上相对的鼻根点 |
鼻顶(尖)点 | Prn | 鼻部软组织之最突点 |
鼻小柱点 | Cm | 小柱顶部之间的中点,与相应鼻孔的顶部水平 |
鼻下(底)点 | Sn | 鼻小柱与上唇之连接点,代表上唇基底部的位置/鼻中隔下缘与上唇交界处的中点 |
上唇凹点 | A' | 鼻下点与上唇突点弧线连线之最凹点 |
上唇突点 | UI | 上唇之最突点 |
上唇下点/上口点 | Stms | 上唇(下)红缘之最(低)下点 |
下唇上点/下口点 | Stmi | 下唇(上)红缘之最高(上)点。在正常面形者中,此点常与上口点Stms/Stoms重合在一起 |
下唇突点 | LL | 下唇之最突点/下红线的中点 |
下唇凹点/颏唇沟点 | B' | 颏唇沟之最凹点。代表下唇之基底部/下唇与颏部之间的最凹点 |
软组织颏前点 | Pog' | 颏部软组织的最前点。代表软组织颏部的位置 |
软组织颏顶点 | Gn' | Sn-Pog'与C-Me'延长线的交点/软组织颏前点与软组织颏下点之曲线中点/蝶鞍点、颏顶点间连线(S—N)延长线与颏部软组织外形轮廓之交点 |
软组织颏下点 | Me' | 软组织颏部最低点 |
颏颈角点 | C | 软组织颏部与颈部的交界点 |
对称分布标志点 | ||
外眦点 | Ex | 眼裂的外连合 |
眶上缘点 | Os | 眉毛下缘的最高点 |
眶下缘点 | Or | 眼眶下缘的最低点 |
颊点 | Chk | 在Camper平面与连接外眼角和唇连合的连线的交叉处 |
鼻翼点 | Al | 鼻翼等高线上的最侧点 |
鼻翼外侧点 | Ac | 鼻翼弯曲根部的最外侧点 |
鼻孔轴下点 | Itn | 鼻孔轴下点 |
鼻孔轴上点 | Stn | 鼻孔轴线上点 |
唇峰点 | Cph | 在人中的每个隆起边缘上恰好在朱红线上方 |
口裂点 | Ch | 唇连合 |
耳屏上缘点 | T | 在耳屏的上缘 |
耳廓最高点 | Sa | 耳廓游离缘的最高点 |
耳垂最后点 | Pa | 耳垂游离缘的最后点 |
耳垂最下点 | Sba | 耳垂游离缘的最低点 |
下颌角 | Go | 下颌角最外侧点 |
Tab.3
Definitions of angles and proportions and SCR in the evaluation and test set"
检测指标上面-面高比 | 定义 | 验证集SCR81.08 | 测试SCR 100.00 |
---|---|---|---|
下面-面高比 | 89.19 | 100.00 | |
颏-面高比 | 100.00 | 100.00 | |
下颌-面高比 | 89.19 | 100.00 | |
下颌-上面高比 | 89.19 | 100.00 | |
下颌-下面高比 | 81.08 | 100.00 | |
上唇-上面高比 | 81.08 | 100.00 | |
上唇-下颌高比 | 81.08 | 100.00 | |
上唇-鼻高比 | 89.19 | 100.00 | |
下唇-面高比 | 70.27 | 100.00 | |
下唇-下颌高比 | 75.68 | 100.00 | |
下唇-颏高比 | 94.59 | 100.00 | |
颏颈角 | ∠C'-Me'/G'-Pog' | 94.59 | 100.00 |
面突角 | ∠G'-Sn-Pog' | 89.19 | 100.00 |
全面突角 | ∠G'-Prn-Pog' | 100.00 | 100.00 |
正中第三面角 | ∠N'-T-Sn | 94.59 | 100.00 |
下第三面角 | ∠Sn-T-Me' | 81.08 | 100.00 |
鼻唇角 | ∠C'-Sn-Ul | 97.30 | 97.30 |
鼻面角 | ∠G'-Pog'/N'-Prn | 91.89 | 81.30 |
鼻颏角 | ∠N'-Prn-Pog' | 100.00 | 100.00 |
颏唇沟角 | ∠Ll-B'-Pog' | 81.08 | 16.00 |
面高-面宽比 | 100.00 | 100.00 | |
下颌-面宽比 | 100.00 | 100.00 | |
下颌宽-面高比 | 97.30 | 92.00 | |
下颌高-下颌宽比 | 97.30 | 92.00 | |
上唇高-唇宽比 | 91.89 | 88.00 | |
口宽-轮廓比 | 97.59 | 98.67 |
[1] |
Peck H, Peck S. A concept of facial esthetics[J]. Angle Orthod, 1970, 40(4):284-318.
doi: 10.1043/0003-3219(1970)040<0284:ACOFE>2.0.CO;2 pmid: 4917993 |
[2] |
Bashour M. History and current concepts in the analysis of facial attractiveness[J]. Plast Reconstr Surg, 2006, 118(3):741-756.
doi: 10.1097/01.prs.0000233051.61512.65 pmid: 16932186 |
[3] |
Malkoç S, Demir A, Uysal T, et al. Angular photogrammetric analysis of the soft tissue facial profile of Turkish adults[J]. Eur J Orthod, 2009, 31(2):174-179.
doi: 10.1093/ejo/cjn082 |
[4] |
He ZJ, Jian XC, Wu XS, et al. Anthropometric measurement and analysis of the external nasal soft tissue in 119 young Han Chinese adults[J]. J Craniofac Surg, 2009, 20(5):1347-1351.
doi: 10.1097/SCS.0b013e3181ae41cf |
[5] |
Chu G, Zhao JM, Han MQ, et al. Three-dimensional prediction of nose morphology in Chinese young adults: A pilot study combining cone-beam computed tomography and 3dMD photogrammetry system[J]. Int J Legal Med, 2020, 134(5):1803-1816.
doi: 10.1007/s00414-020-02351-8 pmid: 32647961 |
[6] |
Bishara SE, Cummins DM, Jorgensen GJ, et al. A computer assisted photogrammetric analysis of soft tissue changes after orthodontic treatment. Part I: Methodology and reliability[J]. Am J Orthod Dentofacial Orthop, 1995, 107(6):633-639.
doi: 10.1016/S0889-5406(95)70107-9 |
[7] |
Moshkelgosha V, Fathinejad S, Pakizeh Z, et al. Photographic facial soft tissue analysis by means of linear and angular measurements in an adolescent Persian population[J]. Open Dent J, 2015, 9: 346-356.
doi: 10.2174/1874210601509010346 pmid: 26464606 |
[8] |
Cummins DM, Bishara SE, Jakobsen JR. A computer assisted photogrammetric analysis of soft tissue changes after orthodontic treatment. Part Ⅱ: Results[J]. Am J Orthod Dentofacial Orthop, 1995, 108(1):38-47.
doi: 10.1016/S0889-5406(95)70064-1 |
[9] |
Arık SÖ, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks[J]. J Med Imaging, 2017, 4(1):014501.
doi: 10.1117/1.JMI.4.1.014501 |
[10] | Wang SM, Li HQ, Li JZ, et al. Automatic analysis of lateral cephalograms based on multiresolution decision tree regression voting[J]. J Healthc Eng, 2018, 2018: 1797502. |
[11] |
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386 |
[12] |
Aubreville M, Knipfer C, Oetter N, et al. Automatic classification of cancerous tissue in laseren domicroscopy images of the oral cavity using deep learning[J]. Sci Rep, 2017, 7(1):11979.
doi: 10.1038/s41598-017-12320-8 pmid: 28931888 |
[13] |
Yu MX, Yan H, Xia JB, et al. Deep convolutional neural networks for tongue squamous cell carcinoma classification using Raman spectroscopy[J]. Photodiagnosis Photodyn Ther, 2019, 26: 430-435.
doi: S1572-1000(19)30162-0 pmid: 31082525 |
[14] | Zhang R, Huang L, Xia W, et al. Multiple supervised residual network for osteosarcoma segmentation in CT images[J]. ComputMed Imaging Graph, 2018, 63: 1-8. |
[15] |
Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019, 48(4):20180051.
doi: 10.1259/dmfr.20180051 |
[16] |
Hwang HW, Park JH, Moon JH, et al. Automated identification of cephalometric landmarks: Part 2-Might it be better than human?[J]. Angle Orthod, 2020, 90(1):69-76.
doi: 10.2319/022019-129.1 |
[17] |
Douglas TS. Image processing for craniofacial landmark identification and measurement: A review of photogrammetry and cephalometry[J]. Comput Med Imaging Graph, 2004, 28(7):401-409.
doi: 10.1016/j.compmedimag.2004.06.002 |
[18] | YUE W, BIN Y. Application of machine learning in orthodontics[J]. Stomatology, 2022, 42(1):29-35. |
[19] | Yao J, Zeng W, He T, et al. Automatic localization of cephalometric landmarks based on convolutional neural network[J]. Am J Orthod Dentofacial Orthop, 2022, 161(3):e250-e259. |
[20] |
Rhee SC, Dhong ES, Yoon ES. Photogrammetric facial analysis of attractive Korean entertainers[J]. Aesthetic Plast Surg, 2009, 33(2):167-174.
doi: 10.1007/s00266-008-9257-0 pmid: 19034560 |
[21] |
Wen YF, Wong HM, McGrath CP. A longitudinal study of facial growth of Southern Chinese in Hong Kong: Comprehensive photogrammetric analyses[J]. PLoS One, 2017, 12(10):e0186598.
doi: 10.1371/journal.pone.0186598 |
[22] |
El-Fegh I, Galhood M, Sid-Ahmed M, et al. Automated 2-D cephalometric analysis of X-ray by image registration approach based on least square approximator[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2008, 2008: 3949-3952.
doi: 10.1109/IEMBS.2008.4650074 pmid: 19163577 |
[23] |
Vanden Homberg MJC, Gevaert CM, Georgiadou Y. The changing face of accountability in humanitarianism: Using artificial intelligence for anticipatory action[J]. PaG, 2020, 8(4):456-467.
doi: 10.17645/pag.v8i4.3158 |
[24] | Gragnaniello D, Marra F, Verdoliva L. Detection of AI-generated synthetic faces[M]// Handbook of Digital Face Manipulation and Detection. Cham: Springer, 2022: 191-212. |
[25] |
Patcas R, Bornstein MM, Schätzle MA, et al. Artificial intelligence in medico-dental diagnostics of the face: A narrative review of opportunities and challenges[J]. Clin Oral Investig, 2022, 26(12):6871-6879.
doi: 10.1007/s00784-022-04724-2 |
[26] | Li YS, Dang B, LiWC, et al. GLH-water: A large-scale dataset for global surface water detection in large-size very-high-resolution satellite imagery[EB/OL]. 2023: 2303.09310. https://arxiv.org/abs/2303.09310 |
[27] |
Ahmed N, Bin Mahbub R, Rahman RM. Learning to extract buildings from ultra-high-resolution drone images and noisy labels[J]. Int J Remote Sens, 2020, 41(21):8216-8237.
doi: 10.1080/01431161.2020.1763496 |
[28] |
Degollada E, Amigó N, O’Callaghan S, et al. A novel technique for photo-identification of the fin whale, Balaenoptera physalus, as determined by drone aerial images[J]. Drones, 2023, 7(3):220.
doi: 10.3390/drones7030220 |
[29] |
Yao ZX, Liu QM, Yang JK, et al. PPUP-GAN: A GAN-based privacy-protecting method for aerial photography[J]. Future Gener Comput Syst, 2023, 145: 284-292.
doi: 10.1016/j.future.2023.03.031 |
[30] |
Tian CW, Xu Y, Zuo WM, et al. Coarse-to-fine CNN for image super-resolution[J]. IEEE Trans Multimed, 2021, 23: 1489-1502.
doi: 10.1109/TMM.2020.2999182 |
[31] | Deng SQ, Xiong YJ, Wang M, et al. Harnessing unrecognizable faces for improving face recognition[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). J Waikoloa, HI, USA. IEEE, 2023: 3413-3422. |
[32] |
Kong WY, You ZS, Lv XB. 3D face recognition algorithm based on deep Laplacian pyramid under the normalization of epidemic control[J]. Comput Commun, 2023, 199: 30-41.
doi: 10.1016/j.comcom.2022.12.011 |
[1] | . Comparison of facial aesthetic assessment of orthodontic treatment between orthodontists and patients [J]. , 2014, 34(6): 450-453. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||