Stomatology ›› 2023, Vol. 43 ›› Issue (6): 534-539.doi: 10.13591/j.cnki.kqyx.2023.06.010
• Clinical Research • Previous Articles Next Articles
WANG Zhifan1,2,3,DAI Xiubin4,ZHOU Yanqi4,MAO Tianyi4,HUANG Hong1,2,3,SONG Hongcheng1,2,3,WANG Dongmiao1,2,3()
Revised:
2023-03-13
Online:
2023-06-28
Published:
2023-07-06
CLC Number:
WANG Zhifan, DAI Xiubin, ZHOU Yanqi, MAO Tianyi, HUANG Hong, SONG Hongcheng, WANG Dongmiao. Automated detection of mandibular third molar root contacting with inferior alveolar canal on panoramic radiographs using a lite one-stage deep learning model[J]. Stomatology, 2023, 43(6): 534-539.
Tab.1
Descriptive epidemiological data of 1570 patients with mandibular third molars"
信息项目 | n(%) |
---|---|
性别 | |
男性 | 667(42.48) |
女性 | 903(57.52) |
阻生侧 | |
右侧 | 321(20.45) |
左侧 | 276(17.58) |
双侧 | 973(61.97) |
CBCT诊断(金标准) | |
接触 | 798(31.38) |
未接触 | 1 745(68.62) |
曲面断层片诊断 | |
接触 | 1 095(43.06) |
未接触 | 1 448(56.94) |
曲面断层片特征性影像 | |
一个或多个 | 779(71.14) |
无 | 316(28.86) |
Tab.2
Diagnostic performance and time for testing among YOLOv5, IAC-MTMnet and manual diagnosis in detecting the proximity of the mandibular third molar and the inferior alveolar canal on panoramic radiographs"
方法 | 正确率 | 灵敏度 | 特异度 | 阳性预测值 | 检测时间/s |
---|---|---|---|---|---|
IAC-MTMnet | 0.885 | 0.747 | 0.956 | 0.899 | 0.059 |
YOLOv5 | 0.881 | 0.819 | 0.913 | 0.829 | 219.8 |
人工评估 | 0.845 | 0.741 | 0.892 | 0.759 | - |
[1] |
Cheung LK, Leung YY, Chow LK, et al. Incidence of neurosensory deficits and recovery after lower third molar surgery: A prospective clinical study of 4 338 cases[J]. Int J Oral Maxillofac Surg, 2010, 39(4):320-326.
doi: 10.1016/j.ijom.2009.11.010 |
[2] | Hasegawa T, Ri S, Shigeta T, et al. Risk factors associated with inferior alveolar nerve injury after extraction of the mandibular third molar—A comparative study of preoperative images by panoramic radiography and computed tomography[J]. Int J Oral Maxillofac Surg, 2013, 42(7):843-851. |
[3] |
Leung YY. Management and prevention of third molar surgery-related trigeminal nerve injury: Time for a rethink[J]. J Korean Assoc Oral Maxillofac Surg, 2019, 45(5):233-240.
doi: 10.5125/jkaoms.2019.45.5.233 pmid: 31728330 |
[4] |
Kang F, Sah MK, Fei G. Determining the risk relationship associated withinferior alveolar nerve injury following removal of mandibular third molar teeth: A systematic review[J]. J Stomatol Oral Maxillofac Surg, 2020, 121(1):63-69.
doi: S2468-7855(19)30200-9 pmid: 31476533 |
[5] |
Ghaeminia H, Meijer GJ, Soehardi A, et al. Position of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiography[J]. Int J Oral Maxillofac Surg, 2009, 38(9):964-971.
doi: 10.1016/j.ijom.2009.06.007 |
[6] |
Rood JP, Shehab BA. The radiological prediction of inferior alveolar nerve injury during third molar surgery[J]. Br J Oral Maxillofac Surg, 1990, 28(1):20-25.
doi: 10.1016/0266-4356(90)90005-6 |
[7] |
Su NC, van Wijk A, Berkhout E, et al. Predictive value of panoramic radiography for injury of inferior alveolar nerve after mandibular third molar surgery[J]. J Oral Maxillofac Surg, 2017, 75(4):663-679.
doi: 10.1016/j.joms.2016.12.013 |
[8] |
Baqain ZH, AlHadidi A, AbuKaraky A, et al. Does the use of cone-beam computed tomography before mandibular third molar surgery impact treatment planning?[J]. J Oral Maxillofac Surg, 2020, 78(7):1071-1077.
doi: 10.1016/j.joms.2020.03.002 |
[9] |
Matzen LH, Berkhout E. Cone beam CT imaging of the mandibular third molar: A position paper prepared by the European Academy of Dento Maxillo Facial Radiology (EADMFR)[J]. Dentomaxillofac Radiol, 2019, 48(5):20190039.
doi: 10.1259/dmfr.20190039 |
[10] |
Ohashi Y, Ariji Y, Katsumata A, et al. Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs[J]. Dentomaxillofac Radiol, 2016, 45(3):20150419.
doi: 10.1259/dmfr.20150419 |
[11] |
Fukuda M, Inamoto K, Shibata N, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography[J]. Oral Radiol, 2020, 36(4):337-343.
doi: 10.1007/s11282-019-00409-x pmid: 31535278 |
[12] |
Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network[J]. Oral Dis, 2020, 26(1):152-158.
doi: 10.1111/odi.v26.1 |
[13] |
Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography[J]. Dentomaxillofac Radiol, 2019, 48(3):20180218.
doi: 10.1259/dmfr.20180218 |
[14] |
Vinayahalingam S, Xi T, Bergé S, et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Sci Rep, 2019, 9(1):9007.
doi: 10.1038/s41598-019-45487-3 pmid: 31227772 |
[15] |
Fukuda M, Ariji Y, Kise Y, et al. Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(3):336-343.
doi: 10.1016/j.oooo.2020.04.005 |
[16] |
Wang ZP, Jin LY, Wang S, et al. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system[J]. Postharvest Biol Technol, 2022, 185: 111808.
doi: 10.1016/j.postharvbio.2021.111808 |
[17] | Bochkovskiy A, Wang CY, Liao HY M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. 2020: arXiv: 2004. 10934[2023-03-13]. https://arxiv.org/abs/2004.10934. |
[18] |
Szalma J, Vajta L, Lovász BV, et al. Identification of specific panoramic high-risk signs in impacted third molar cases in which cone beam computed tomography changes the treatment decision[J]. J Oral Maxillofac Surg, 2020, 78(7):1061-1070.
doi: 10.1016/j.joms.2020.03.012 |
[19] | 谢理哲, 樊瑜波. 深度学习技术在口腔医学中的应用研究[J]. 口腔医学, 2022, 42(1):8-13. |
[20] |
Kuwada C, Ariji Y, Fukuda M, et al. Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(4):464-469.
doi: 10.1016/j.oooo.2020.04.813 |
[21] |
Chang HJ, Lee SJ, Yong TH, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis[J]. Sci Rep, 2020, 10(1):7531.
doi: 10.1038/s41598-020-64509-z |
[22] |
Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss[J]. Sci Rep, 2019, 9(1):8495.
doi: 10.1038/s41598-019-44839-3 pmid: 31186466 |
[23] |
Ekert T, Krois J, Meinhold L, et al. Deep learning for the radiographic detection of apical lesions[J]. J Endod, 2019, 45(7):917-922.e5.
doi: S0099-2399(19)30256-0 pmid: 31160078 |
[24] |
Ariji Y, Yanashita Y, Kutsuna S, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 128(4):424-430.
doi: 10.1016/j.oooo.2019.05.014 |
[25] | Zhu TE, Chen DQ, Wu FL, et al. Artificial intelligence model to detect real contact relationship between mandibular third molars and inferior alveolar nerve based on panoramic radiographs[J]. Diagnostics (Basel), 2021, 11(9):1664. |
[26] |
Reia VCB, de Toledo Telles-Araujo G, Peralta-Mamani M, et al. Diagnostic accuracy of CBCT compared to panoramic radiography in predicting IAN exposure: A systematic review and meta-analysis[J]. Clin Oral Invest, 2021, 25(8):4721-4733.
doi: 10.1007/s00784-021-03942-4 |
[27] |
Wang DM, Lin TY, Wang YL, et al. Radiographic features of anatomic relationship between impacted third molar and inferior alveolar canal on coronal CBCT images: Risk factors for nerve injury after tooth extraction[J]. Arch Med Sci, 2018, 14(3):532-540.
doi: 10.5114/aoms.2016.58842 pmid: 29765439 |
[28] |
Ueda M, Nakamori K, Shiratori K, et al. Clinical significance of computed tomographic assessment and anatomic features of the inferior alveolar canal as risk factors for injury of the inferior alveolar nerve at third molar surgery[J]. J Oral Maxillofac Surg, 2012, 70(3):514-520.
doi: 10.1016/j.joms.2011.08.021 |
[29] |
Liu MQ, Xu ZN, Mao WY, et al. Deep learning-based evaluation of the relationship between mandibular third molar and mandibular canal on CBCT[J]. Clin Oral Invest, 2022, 26(1):981-991.
doi: 10.1007/s00784-021-04082-5 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||