[1] |
Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the oral microbiome: The site-specialist hypothesis[J]. Annu Rev Microbiol, 2019, 73:335-358.
doi: 10.1146/annurev-micro-090817-062503
pmid: 31180804
|
[2] |
Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases[J]. Int J Oral Sci, 2022, 14(1):14.
doi: 10.1038/s41368-022-00163-7
pmid: 35236828
|
[3] |
Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3):473-493.
doi: 10.1007/s00018-018-2943-4
pmid: 30317530
|
[4] |
廖俏云, 归崎峰. 口腔微生物群与肠道微生物群的交互作用及其意义[J]. 微生物与感染, 2022, 17(5):327-332.
|
[5] |
Li BL, Ge Y, Cheng L, et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice[J]. Int J Oral Sci, 2019, 11(1):10.
doi: 10.1038/s41368-018-0043-9
pmid: 30833566
|
[6] |
Shaffer M, Lozupone C. Prevalence and source of fecal and oral bacteria on infant, child, and adult hands[J]. mSystems, 2018, 3(1):e00192-e00117.
|
[7] |
朱崟, 秦环龙. 口腔微生物与口腔疾病、肠道菌群、肠道疾病的关联性研究进展[J]. 上海预防医学, 2020, 32(3):256-261.
|
[8] |
Scannapieco FA, Dongari-Bagtzoglou A. Dysbiosis revisited: Understanding the role of the oral microbiome in the pathogenesis of gingivitis and periodontitis: A critical assessment[J]. J Periodontol, 2021, 92(8):1071-1078.
doi: 10.1002/JPER.21-0120
pmid: 33902163
|
[9] |
Kitamoto S, Kamada N. Untangling the oral-gut axis in the pathogenesis of intestinal inflammation[J]. Int Immunol, 2022, 34(9):485-490.
doi: 10.1093/intimm/dxac027
pmid: 35716367
|
[10] |
王欣妍, 杜信眉, 周学东. 口腔-肠道微生物与骨关节炎关系的研究新进展[J]. 四川大学学报(医学版), 2023, 54(1):49-53.
|
[11] |
Qian J, Lu J, Huang Y, et al. Periodontitis salivary microbiota worsens colitis[J]. J Dent Res, 2022, 101(5):559-568.
|
[12] |
Sato K, Yamazaki K, Kato T, et al. Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid[J]. mBio, 2021, 12(3):e0077121.
|
[13] |
Nagao JI, Kishikawa S, Tanaka H, et al. Pathobiont-responsive Th17 cells in gut-mouth axis provoke inflammatory oral disease and are modulated by intestinal microbiome[J]. Cell Rep, 2022, 40(10):111314.
|
[14] |
Baj J, Forma A, Sitarz M, et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment[J]. Cells, 2020, 10(1):27.
|
[15] |
Zhang L, Chen X, Ren B, et al. Helicobacter pylori in the oral cavity: Current evidence and potential survival strategies[J]. Int J Mol Sci, 2022, 23(21):13646.
|
[16] |
Soto C, Rojas V, Yáñez L, et al. Porphyromonasgingivalis-Helicobacter pylori co-incubation enhances Porphyromonasgingivalis virulence and increases migration of infected human oral keratinocytes[J]. J Oral Microbiol, 2022, 14(1):2107691.
|
[17] |
王琳琳, 陈锋基, 杨龙苏, 等. 鼻部菌群在慢性鼻窦炎中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(05):474-477.
|
[18] |
Koch CD, Gladwin MT, Freeman BA, et al. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health[J]. Free Radic Biol Med, 2017, 105:48-67.
|
[19] |
Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma[J]. Allergol Int, 2018, 67(1):12-17.
doi: S1323-8930(17)30134-X
pmid: 28941636
|
[20] |
Man WH, deSteenhuijsenPiters WAA, Bogaert D. The microbiota of the respiratory tract: Gatekeeper to respiratory health[J]. Nat Rev Microbiol, 2017, 15(5):259-270.
doi: 10.1038/nrmicro.2017.14
pmid: 28316330
|
[21] |
Meng YT, Mao Y, Tang ZX, et al. Crosstalk between the lung microbiome and lung cancer[J]. Microb Pathog, 2023, 178:106062.
|
[22] |
Manos J. The human microbiome in disease and pathology[J]. APMIS, 2022, 130(12):690-705.
doi: 10.1111/apm.13225
pmid: 35393656
|
[23] |
Frayman KB, Wylie KM, Armstrong DS, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5):646-652.
doi: S1569-1993(18)30941-X
pmid: 30580994
|
[24] |
Haldar S, Jadhav SR, Gulati V, et al. Unravelling the gut-lung axis: Insights into microbiome interactions and Traditional Indian Medicine’s perspective on optimal health[J]. FEMS Microbiol Ecol, 2023, 99(10):fiad103.
|
[25] |
Maruyama D, Liao WI, Tian XL, et al. Regulation of lung immune tone by the gut-lung axis via dietary fiber, gut microbiota, and short-chain fatty acids[J]. Bio Rxiv, 2023:2023.08.24.552964.
|
[26] |
Zeng XH, Yue HW, Zhang L, et al. Gut microbiota-derived autoinducer-2 regulates lung inflammation through the gut-lung axis[J]. Int Immunopharmacol, 2023, 124(Pt B):110971.
|
[27] |
SafiabadiTali SH, LeBlanc JJ, Sadiq Z, et al. Tools and techniques for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 detection[J]. Clin Microbiol Rev, 2021, 34(3):e00228-e00220.
|
[28] |
Jin B, Singh R, Ha SE, et al. Pathophysiological mechanisms underlying gastrointestinal symptoms in patients with COVID-19[J]. World J Gastroenterol, 2021, 27(19):2341-2352.
|
[29] |
杜浩, 李平. 基于“肺肠轴”理论探讨健脾方剂治疗慢性阻塞性肺疾病[J]. 中医药临床杂志, 2022, 34(10):1815-1819.
|
[30] |
Sprooten RTM, Lenaerts K, Braeken DCW, et al. Increased small intestinal permeability during severe acute exacerbations of COPD[J]. Respiration, 2018, 95(5):334-342.
doi: 10.1159/000485935
pmid: 29393240
|
[31] |
Lai HC, Lin TL, Chen TW, et al. Gut microbiota modulates COPD pathogenesis: Role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide[J]. Gut, 2022, 71(2):309-321.
|
[32] |
Vaughan A, Frazer ZA, Hansbro PM, et al. COPD and the gut-lung axis: The therapeutic potential of fibre[J]. J Thorac Dis, 2019, 11(Suppl 17):S2173-S2180.
|
[33] |
Pathak JL, Yan YY, Zhang QB, et al. The role of oral microbiome in respiratory health and diseases[J]. Respir Med, 2021, 185:106475.
|
[34] |
Satyanarayana D, Kulkarni S, Doshi D, et al. Periodontal health status among chronic obstructive pulmonary disease with age- and gender-matched controls[J]. J Indian Soc Periodontol, 2023, 27(5):524-529.
doi: 10.4103/jisp.jisp_479_22
pmid: 37781331
|
[35] |
Wang DY, Dai L, Cui ZQ, et al. Association between periodontal diseases and chronic obstructive pulmonary disease: Evidence from sequential cross-sectional and prospective cohort studies based on UK Biobank[J]. J Clin Periodontol, 2024, 51(1):97-107.
|
[36] |
王吉天, 刘志强, 张天翼, 等. 慢性阻塞性肺疾病频繁急性发作的牙周及唾液指标筛查的研究[J]. 中华口腔医学杂志, 2019, 54(6):410-415.
|
[37] |
周璿, 刘志强, 李威, 等. 牙周基础治疗对慢性阻塞性肺疾病伴慢性牙周炎患者生命质量的影响[J]. 中华口腔医学杂志, 2019, 54(3):151-156.
|
[38] |
Agarwal DM, Dhotre DP, Kumbhare SV, et al. Disruptions in oral and nasal microbiota in biomass and tobacco smoke associated chronic obstructive pulmonary disease[J]. Arch Microbiol, 2021, 203(5):2087-2099.
doi: 10.1007/s00203-020-02155-9
pmid: 33598807
|
[39] |
Charlson ES, Chen J, Custers-Allen R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers[J]. PLoS One, 2010, 5(12):e15216.
|
[40] |
Fazlollahi M, Lee TD, Andrade J, et al. The nasal microbiome in asthma[J]. J Allergy ClinImmunol, 2018, 142(3):834-843.e2.
|
[41] |
程凤琴, 胡波. 冲洗-吸引式口腔护理器对机械通气患者呼吸机相关性肺炎影响的研究[J]. 四川医学, 2019, 40(3):319-322.
|
[42] |
陈文政, 张春华, 王晓松, 等. 肺癌患者营养状况与放疗不良反应的相关性研究[J]. 实用癌症杂志, 2018, 33(9):1439-1441, 1460.
|
[43] |
陶梅梅, 马洪明, 张楠, 等. 老年细菌性肺炎患者血清脂联素及瘦素水平与肺炎严重程度的相关性研究[J]. 国际呼吸杂志, 2018, 38(17):1287-1290.
|
[44] |
Khadka S, Khan S, King A, et al. Poor oral hygiene, oral microorganisms and aspiration pneumonia risk in older people in residential aged care: A systematic review[J]. Age Ageing, 2021, 50(1):81-87.
doi: 10.1093/ageing/afaa102
pmid: 32677660
|
[45] |
Cieplik F, Wiedenhofer AM, Pietsch V, et al. Oral health, oral microbiota, and incidence of stroke-associated pneumonia-a prospective observational study[J]. Front Neurol, 2020, 11:528056.
|
[46] |
Sakaguchi W, Kubota N, Shimizu T, et al. Existence of SARS-CoV-2 entry molecules in the oral cavity[J]. Int J Mol Sci, 2020, 21(17):6000.
|
[47] |
秦子洋, 杨馨, 王瑞, 等. 新型冠状病毒肺炎与口腔疾病[J]. 中国预防医学杂志, 2022, 23(12):956-960.
|
[48] |
Şehirli AÖ, Aksoy U, Koca-Ünsal RB, et al. Role of NLRP3 inflammasome in COVID-19 and periodontitis: Possible protective effect of melatonin[J]. Med Hypotheses, 2021, 151:110588.
|
[49] |
Hung YP, Lee CC, Lee JC, et al. Gut dysbiosis during COVID-19 and potential effect of probiotics[J]. Microorganisms, 2021, 9(8):1605.
|
[50] |
Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19[J]. Gut, 2021, 70(4):698-706.
doi: 10.1136/gutjnl-2020-323020
pmid: 33431578
|
[51] |
Bottari B, Castellone V, Neviani E. Probiotics and covid-19[J]. Int J Food Sci Nutr, 2021, 72(3):293-299.
|
[52] |
Gupta S, Mohindra R, Singla M, et al. The clinical association between Periodontitis and COVID-19[J]. Clin Oral Investig, 2022, 26(2):1361-1374.
|
[53] |
Marouf N, Cai WJ, Said KN, et al. Association between periodontitis and severity of COVID-19 infection: A case-control study[J]. J Clin Periodontol, 2021, 48(4):483-491.
doi: 10.1111/jcpe.13435
pmid: 33527378
|