Stomatology ›› 2025, Vol. 45 ›› Issue (3): 235-240.doi: 10.13591/j.cnki.kqyx.2025.03.014
• Review • Previous Articles
CHANG Xingtao1,2, HU Jiaxin1,2, SUN Jiangling2, ZHANG Jiqin1,2, CHEN Xianrun1,2, BAI Guohui1(), LUO Yi1,2(
)
Received:
2024-04-15
Online:
2025-03-28
Published:
2025-03-18
Contact:
BAI Guohui, LUO Yi
E-mail:baiguohui1228@126.com;medoryi18.27@gzu.edu.cn
CLC Number:
CHANG Xingtao, HU Jiaxin, SUN Jiangling, ZHANG Jiqin, CHEN Xianrun, BAI Guohui, LUO Yi. The inhibitory impact of natural antibacterial biomaterials on Streptococcus mutans and its associated biofilm formation[J]. Stomatology, 2025, 45(3): 235-240.
Tab.1
Study on the inhibitory effect of plant-derived antibacterial biomaterials on S.mutans and its biofilm"
来源 | 名称 | 主要活性成分 | 类别 | 作用及机制 |
---|---|---|---|---|
果蔬类 | 石榴[ | 黄酮-3-醇、黄酮苷类、酚酸和可水解单宁 | 多酚类 | 抑制S.mutans的黏附和生长 |
柑橘、柠檬[ | 柑橘/柠檬精油 | 萜烯类 | 抑制GTF基因表达减少葡聚糖的产生,从而影响细菌黏附和生物膜形成 | |
葡萄[ | 葡萄籽原花青素 | 多酚类 | 破坏S.mutans的结构完整性,影响细菌的黏附,降低S.mutans生物膜活性 | |
芹菜[ | 芹菜素 | 黄酮类 | 抑制GTF活性和不溶性EPS的产生,减少细菌表面蛋白质抗原数量来降低细菌疏水性而抑制S.mutans黏附 | |
中草药类 | 苦参、黄连[ | 苦参碱、白屈菜碱、白屈菜红碱等 | 生物碱类 | 抑制S.mutans的生长、代谢及其生物膜的形成 |
厚朴[ | 厚朴酚与和厚朴酚 | 多酚类 | 有效抑制S.mutans的c、d型菌株,减缓产酸,抑制早期根面龋的发展 | |
紫地榆、五倍子[ | 鞣质 | 多酚类 | 鞣质可以与细胞表面脂磷壁酸结合,抑制S.mutans的生长;降低GTF活性,减弱S.mutans的黏附能力;促进再矿化 | |
肉桂[ | 肉桂醛 | 多酚类 | 与Lux S/AI2型群体感应关键蛋白Lux R结合,抑制生物膜形成 | |
金银花[ | 绿原酸 | 多酚类 | 通过影响细菌细胞膜的稳定性和诱导活性氧的产生来抑制S.mutans生长;破坏生物膜的立体结构而清除生物膜 | |
芦荟[ | 芦荟苷 | 蒽醌类 | 破坏细菌细胞壁的聚糖骨架结构,减少遗传物质和蛋白质合成而抑制S.mutans生长;干扰生物膜形成 | |
香辛料类 | 姜黄[ | 姜黄素 | 多酚类 | 下调GTF和S.mutans群体感应基因、减少不溶性EPS的产生,抑制生物膜生长代谢;结合光动力疗法具有协同抗菌作用 |
大蒜[ | 大蒜素 | 硫化物 | 大蒜素与半胱氨酸和巯基结合后形成硫代半胱氨酸,阻止细菌与正常蛋白质结合进而抑制S.mutans的生长和繁殖 | |
茴香[ | 茴香醛 | 萜烯类 | 破坏S.mutans细胞膜通透性,降低S.mutans的疏水性、减少产酸和EPS水平 | |
青花椒[ | 果皮精油 | 萜烯类 | 破坏S.mutans的链状结构与细胞膜完整性发挥抑菌作用 |
[1] | Liu BW, Li M, Li X, et al. An optimized caries model of Streptococcus mutans in rats and its application for evaluating prophylactic vaccines[J]. Hum Vaccin Immunother, 2024, 20(1): 2345943. |
[2] | Ngokwe ZB, Wolfoviz-Zilberman A, Sharon E, et al. Trans-cinnamaldehyde-fighting Streptococcus mutans using nature[J]. Pharmaceutics, 2024, 16(1): 113. |
[3] | Ahmad SS, Siddiqui MF, Maqbool F, et al. Combating cariogenic Streptococcus mutans biofilm formation and disruption with coumaric acid on dentin surface[J]. Molecules, 2024, 29(2): 397. |
[4] | Jailani A, Kalimuthu S, Rajasekar V, et al. Trans-cinnamaldehyde eluting porous silicon microparticles mitigate cariogenic biofilms[J]. Pharmaceutics, 2022, 14(7): 1428. |
[5] | Kornsombut N, Takenaka S, Sotozono M, et al. Antibiofilm properties and demineralization suppression in early enamel lesions using dental coating materials[J]. Antibiotics, 2024, 13(1): 106. |
[6] | 高洁, 赵玮钦, 李珏丹, 等. 石榴籽粗提物的提取工艺优化及其对变异链球菌的抑菌作用研究[J]. 化学与生物工程, 2022, 39(11): 18-22. |
[7] | Benzaid C, Belmadani A, Tichati L, et al. Effect of Citrus aurantium L. essential oil on Streptococcus mutans growth, biofilm formation and virulent genes expression[J]. Antibiotics, 2021, 10(1): 54. |
[8] | 郭学强, 刘新强, 张稼瑞, 等. 天然药物防龋的研究进展[J]. 中国医药导报, 2023, 20(13): 63-66. |
[9] | 金晓婷, 傅柏平, 蒋文翔, 等. 葡萄籽原花青素对变异链球菌生物膜的形态学改变[C]// 2019年中华口腔医学会口腔材料专业委员会第十四次全国口腔材料学术年会论文集, 杭州, 2019: 71. |
[10] | 李蓓蕾, 岳阳丽, 刘瑶, 等. 芹菜素对变异链球菌致龋力影响的实验研究[J]. 牙体牙髓牙周病学杂志, 2014, 24(7): 377-380. |
[11] | 从兆霞, 袁曦玉, 吴泽钰, 等. 苦参提取物对口腔主要致龋细菌作用的实验研究[J]. 中国微生态学杂志, 2019, 31(10): 1186-1192. |
[12] | 李佳凝, 于明岳, 刘双, 等. 防龋中药及其防龋机制的研究概况[J]. 实用医院临床杂志, 2023, 20(5): 195-197. |
[13] | 刘仁英, 闻健琼, 张庆华, 等. 厚朴汤剂对变形链球菌影响的实验研究[J]. 中国中医药现代远程教育, 2021, 19(3): 147-149. |
[14] | 李娜, 吴昊泽, 范晓敏, 等. 中药五倍子对牙体硬组织及树脂材料表面变异链球菌的抑菌作用研究[J]. 空军军医大学学报, 2023, 44(9): 808-811, 818. |
[15] |
王琳, 武雨伦, 曹学丽. 植物化学成分对变异链球菌生物被膜的抑制机制研究进展[J]. 中国酿造, 2023, 42(8): 7-13.
doi: 10.11882/j.issn.0254-5071.2023.08.002 |
[16] | 薛静秀, 李涛, 马哲, 等. 芦荟苷-绿原酸混合液对变异链球菌抑制作用的体外研究[J]. 河北医科大学学报, 2021, 42(7): 759-764. |
[17] | 李茹芳, 李秋艳, 崔霞, 等. 苏木不同提取物对两种口腔致龋菌的影响[J]. 时珍国医国药, 2020, 31(1): 33-35. |
[18] |
吴菊, 王玲, 刘兴容. 黄芩苷对变异链球菌UA159体外的抑制作用[J]. 口腔疾病防治, 2021, 29(7): 462-467.
doi: 10.12016/j.issn.2096-1456.2021.07.005 |
[19] | 胡洋, 宇翔, 陶茜, 等. 五种中草药提取物对致龋菌的体外抑菌作用研究[J]. 江西医药, 2022, 57(7): 690-691, 700. |
[20] | Kazemipoor M, Fadaei Tehrani P, Zandi H, et al. Chemical composition and antibacterial activity of Berberis vulgaris (barberry) against bacteria associated with caries[J]. Clin Exp Dent Res, 2021, 7(4): 601-608. |
[21] | 杨倩, 朱思颖, 石绍芳, 等. 蒲公英全草不同部位醇提物对致龋菌的影响[J]. 大理大学学报, 2019, 4(4): 18-21. |
[22] | Li BC, Li XL, Lin HC, et al. Curcumin as a promising antibacterial agent: Effects on metabolism and biofilm formation in S. mutans[J]. Biomed Res Int, 2018, 2018: 4508709. |
[23] | Comeau P, Manso A. A systematic evaluation of curcumin concentrations and blue light parameters towards antimicrobial photodynamic therapy against cariogenic microorganisms[J]. Pharmaceutics, 2023, 15(12): 2707. |
[24] | 曹婷婷. 大蒜素对变异链球菌的体外抑菌效果研究[D]. 合肥: 安徽医科大学, 2019. |
[25] | 云莉, 倪雅丽. 茴香醛对变异链球菌的抗菌活性和抗生物被膜活性[J]. 热带生物学报, 2022, 13(6): 614-621. |
[26] | 程志敏, 陈彦荣, 王建辉, 等. 青花椒精油对致龋菌的体外抑菌活性[J]. 食品科学, 2022, 43(21): 70-77. |
[27] | Matica MA, Aachmann FL, Tøndervik A, et al. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action[J]. Int J Mol Sci, 2019, 20(23): 5889. |
[28] | Do NHN, Truong QT, Le PK, et al. Recent developments in chitosan hydrogels carrying natural bioactive compounds[J]. Carbohydr Polym, 2022, 294: 119726. |
[29] | Róna V, Bencze B, Kelemen K, et al. Effect of chitosan on the number of Streptococcus mutans in saliva: A meta-analysis and systematic review[J]. Int J Mol Sci, 2023, 24(20): 15270. |
[30] |
Mirfasihi A, Malek Afzali B, Ebrahimi Zadeh H, et al. Effect of a combination of photodynamic therapy and chitosan on Streptococcus mutans (an in vitro study)[J]. J Lasers Med Sci, 2020, 11(4): 405-410.
doi: 10.34172/jlms.2020.64 pmid: 33425290 |
[31] | Maluin FN, Katas H. Chitosan functionalization of metal- and carbon-based nanomaterials as an approach toward sustainability tomorrow[J]. Nanotoxicology, 2022, 16(4): 425-449. |
[32] |
Wang JJ, Dou XJ, Song J, et al. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3): 831-859.
doi: 10.1002/med.21542 pmid: 30353555 |
[33] | Ridyard KE, Overhage J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent[J]. Antibiotics, 2021, 10(6): 650. |
[34] | 朱锦怡, 樊琪, 周媛, 等. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219. |
[35] |
Jurczak A, KoŚcielniak D, PapieŻ M, et al. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression[J]. Biol Res, 2015, 48: 61.
doi: 10.1186/s40659-015-0050-7 pmid: 26520150 |
[36] |
Mai S, Mauger MT, Niu LN, et al. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections[J]. Acta Biomater, 2017, 49: 16-35.
doi: S1742-7061(16)30622-5 pmid: 27845274 |
[37] | 李瑞, 王宏岩. 唾液富组蛋白5应用于口腔疾病的研究进展[J]. 中国实用口腔科杂志, 2022, 15(2): 231-235. |
[38] | Huo LJ, Zhang K, Ling JQ, et al. Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans[J]. Arch Oral Biol, 2011, 56(9): 869-876. |
[39] |
Fernández-Presas AM, Márquez Torres Y, García González R, et al. Ultrastructural damage in Streptococcus mutans incubated with saliva and histatin 5[J]. Arch Oral Biol, 2018, 87: 226-234.
doi: S0003-9969(18)30004-9 pmid: 29328950 |
[40] |
Siqueira WL, Margolis HC, Helmerhorst EJ, et al. Evidence of intact histatins in the in vivo acquired enamel pellicle[J]. J Dent Res, 2010, 89(6): 626-630.
doi: 10.1177/0022034510363384 pmid: 20351356 |
[41] | Jiang SJ, Zha YM, Zhao T, et al. Antimicrobial peptide temporin derivatives inhibit biofilm formation and virulence factor expression of Streptococcus mutans[J]. Front Microbiol, 2023, 14: 1267389. |
[42] | McLean DT, McCrudden MT, Linden GJ, et al. Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and Magainin-AM1: Potent activity against oral pathogens[J]. Regul Pept, 2014, 194/195: 63-68. |
[43] | Zhang MJ, Wei W, Sun YM, et al. Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts[J]. Arch Oral Biol, 2016, 70: 79-87. |
[44] | Wagenknecht DR, Gregory RL. Analyses of the effects of arginine, nicotine, serotype and collagen-binding proteins on biofilm development by 33 strains of Streptococcus mutans[J]. Front Oral Health, 2021, 2: 764784. |
[45] | Zheng X, He JZ, Wang L, et al. Ecological effect of arginine on oral microbiota[J]. Sci Rep, 2017, 7(1): 7206. |
[46] | Sharma S, Lavender S, Woo J, et al. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy[J]. Microbiology, 2014, 160(Pt 7): 1466-1473. |
[47] | Bijle MN, Pichika MR, Mak KK, et al. Concentration-dependent multi-potentiality of L-arginine: Antimicrobial effect, hydroxyapatite stability, and MMPs inhibition[J]. Molecules, 2021, 26(21): 6605. |
[48] | 翁璐婷, 杨德琴, 陈亮. 选择性抑制变异链球菌的材料及其研究进展[J]. 四川大学学报(医学版), 2022, 53(5): 922-928. |
[49] | Gong SG, El-Shennawy S, Choudhary P, et al. Antimicrobial activity of probiotic Streptococcus salivarius LAB813 on in vitro cariogenic biofilms[J]. Arch Oral Biol, 2023, 154: 105760. |
[50] | Zhang QX, Qin SJ, Huang Y, et al. Inhibitory and preventive effects of Lactobacillus plantarum FB-T9 on dental caries in rats[J]. J Oral Microbiol, 2020, 12(1): 1703883. |
[51] |
Higuchi T, Suzuki N, Nakaya S, et al. Effects of Lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor[J]. Arch Oral Biol, 2019, 98: 243-247.
doi: S0003-9969(18)30424-2 pmid: 30530235 |
[52] |
Hasslöf P, West CE, Videhult FK, et al. Early intervention with probiotic Lactobacillus paracasei F19 has no long-term effect on caries experience[J]. Caries Res, 2013, 47(6): 559-565.
doi: 10.1159/000350524 pmid: 23838478 |
[53] |
Schwendicke F, Dörfer C, Kneist S, et al. Cariogenic effects of probiotic Lactobacillus rhamnosus GG in a dental biofilm model[J]. Caries Res, 2014, 48(3): 186-192.
doi: 10.1159/000355907 pmid: 24480927 |
[54] | Zare Javid A, Amerian E, Basir L, et al. Effects of the consumption of probiotic yogurt containing Bifidobacterium lactis Bb12 on the levels of Streptococcus mutans and lactobacilli in saliva of students with initial stages of dental caries: A double-blind randomized controlled trial[J]. Caries Res, 2020, 54(1): 68-74. |
[55] |
Caglar E, Kuscu OO, Selvi Kuvvetli S, et al. Short-term effect of ice-cream containing Bifidobacterium lactis Bb-12 on the number of salivary mutans streptococci and lactobacilli[J]. Acta Odontol Scand, 2008, 66(3): 154-158.
doi: 10.1080/00016350802089467 pmid: 18568474 |
[56] |
赵晓苇, 陈方圆, 危宏平, 等. 噬菌体裂解酶LysP53漱口水的制备与评价[J]. 口腔医学研究, 2023, 39(6): 553-557.
doi: 10.13701/j.cnki.kqyxyj.2023.06.016 |
[57] | 杨昌颖, 吴亦菲, 谢廷怿, 等. 食源性致病菌天然抗生物被膜剂的研究进展[J]. 工业微生物, 2023, 53(6): 148-156. |
[58] | Wolfoviz-Zilberman A, Kraitman R, Hazan R, et al. Phage targeting Streptococcus mutans in vitro and in vivo as a caries-preventive modality[J]. Antibiotics, 2021, 10(8): 1015. |
[59] |
Rehman S, Ali Z, Khan M, et al. The dawn of phage therapy[J]. Rev Med Virol, 2019, 29(4): e2041.
doi: 10.1002/rmv.2041 |
[60] | Ben-Zaken H, Kraitman R, Coppenhagen-Glazer S, et al. Isolation and characterization of Streptococcus mutans phage as a possible treatment agent for caries[J]. Viruses, 2021, 13(5): 825. |
[61] | Field D, Fernandez de Ullivarri M, Ross RP, et al. After a century of nisin research-where are we now?[J]. FEMS Microbiol Rev, 2023, 47(3): fuad023. |
[62] | 段丽丽, 阎红, 贾洪峰, 等. 新型天然抗菌试剂研究进展[J]. 中国调味品, 2016, 41(2): 155-160. |
[63] |
谭易, 麦穗, 刘佳, 等. Nisin改性通用型树脂粘接剂的抗菌性能研究[J]. 口腔疾病防治, 2018, 26(9): 557-563.
doi: 10.12016/j.issn.2096-1456.2018.09.003 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||