[1] |
王楚瑶, 邹璐芗, 陆川, 等. MiR-330-3p在颞下颌关节骨关节炎软骨退变中的作用机制研究[J]. 中国口腔颌面外科杂志, 2022, 20(4):320-327.
|
[2] |
时子文, 祝颂松, 毕瑞野. 颞下颌关节骨关节炎的药物治疗基础与临床研究进展[J]. 中国现代应用药学, 2022, 39(4):552-559.
|
[3] |
钟阳, 满城. 颞下颌关节骨关节炎发病机制的研究进展[J]. 口腔颌面外科杂志, 2021, 31(4):245-248.
doi: 10.3969/j.issn.1005-4979.2021.04.9
|
[4] |
王悦, 高文莫, 耿威. 颞下颌关节骨关节炎的实验动物建模研究进展[J]. 口腔颌面修复学杂志, 2023, 24(1):70-75.
|
[5] |
Tao DK, Zhang L, Ding YP, et al. Primary cilia support cartilage regeneration after injury[J]. Int J Oral Sci, 2023, 15(1):22.
doi: 10.1038/s41368-023-00223-6
pmid: 37268650
|
[6] |
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease[J]. Exp Cell Res, 2023, 431(1):113751.
|
[7] |
Stam LB, Clark AL. Chondrocyte primary cilia lengthening and shortening in response to mediators of osteoarthritis; a role for integrin α1β1 and focal adhesions[J]. Osteoarthr Cartil Open, 2023, 5(2):100357.
|
[8] |
Meng H, Fu S, Ferreira MB, et al. YAP activation inhibits inflammatory signalling and cartilage breakdown associated with reduced primary cilia expression[J]. Osteoarthritis Cartilage, 2023, 31(5):600-612.
|
[9] |
Corrigan MA, Ferradaes TM, Riffault M, et al. Ciliotherapy treatments to enhance biochemically- and biophysically-induced mesenchymal stem cell osteogenesis: A comparison study[J]. Cell Mol Bioeng, 2018, 12(1):53-67.
|
[10] |
Zhang J, Mu XT, Zhang X, et al. Potential pathological and molecular mechanisms of temporomandibular joint osteoarthritis[J]. J Dent Sci, 2023, 18(3):959-971.
doi: 10.1016/j.jds.2023.04.002
pmid: 37404608
|
[11] |
Kong H, Wang XQ, Zhang XN. Exercise for osteoarthritis: A literature review of pathology and mechanism[J]. Front Aging Neurosci, 2022, 14: 854026.
|
[12] |
Zhao HM, Liu SP, Ma C, et al. Estrogen-related receptor γ induces angiogenesis and extracellular matrix degradation of temporomandibular joint osteoarthritis in rats[J]. Front Pharmacol, 2019, 10: 1290.
doi: 10.3389/fphar.2019.01290
pmid: 31780931
|
[13] |
Zhu HM, Hu YH, Wang CD, et al. CircGCN1L1 promotes synoviocyte proliferation and chondrocyte apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis[J]. Cell Death Dis, 2020, 11(4):284.
doi: 10.1038/s41419-020-2447-7
pmid: 32332704
|
[14] |
Xu K, Meng Z, Xian XM, et al. LncRNA PVT1 induces chondrocyte apoptosis through upregulation of TNF-α in synoviocytes by sponging miR-211-3p[J]. Mol Cell Probes, 2020, 52: 101560.
|
[15] |
Cao P, Feng Y, Deng M, et al. MiR-15b is a key regulator of proliferation and apoptosis of chondrocytes from patients with condylar hyperplasia by targeting IGF1, IGF1R and BCL2[J]. Osteoarthritis Cartilage, 2019, 27(2):336-346.
|
[16] |
Lu K, Ma F, Yi D, et al. Molecular signaling in temporomandibular joint osteoarthritis[J]. J Orthop Translat, 2021, 32: 21-27.
|
[17] |
Yang HX, Zhang M, Liu Q, et al. Inhibition of ihh reverses temporomandibular joint osteoarthritis via a PTH1R signaling dependent mechanism[J]. Int J Mol Sci, 2019, 20(15):3797.
|
[18] |
Liu WJ, Luo HY, Wang RL, et al. Rapamycin-induced autophagy promotes the chondrogenic differentiation of synovium-derived mesenchymal stem cells in the temporomandibular joint in response to IL-1β[J]. Biomed Res Int, 2020, 2020: 4035306.
|
[19] |
Yang HX, Wen Y, Zhang M, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint[J]. Autophagy, 2020, 16(2):271-288.
doi: 10.1080/15548627.2019.1606647
pmid: 31007149
|
[20] |
Cardoneanu A, Macovei LA, Burlui AM, et al. Temporomandibular joint osteoarthritis: Pathogenic mechanisms involving the cartilage and subchondral bone, and potential therapeutic strategies for joint regeneration[J]. Int J Mol Sci, 2022, 24(1):171.
|
[21] |
Liu X, Zhao J, Jiang H, et al. ALPK1 aggravates TMJOA cartilage degradation via NF-κB and ERK1/2 signaling[J]. J Dent Res, 2022, 101(12):1499-1509.
|
[22] |
Feng X, Li SW, Wang SS, et al. Piezo1 mediates the degradation of cartilage extracellular matrix in malocclusion-induced TMJOA[J]. Oral Dis, 2024, 30(4):2425-2438.
|
[23] |
Ok SM, Kim JH, Kim JS, et al. Local injection of growth hormone for temporomandibular joint osteoarthritis[J]. Yonsei Med J, 2020, 61(4):331-340.
doi: 10.3349/ymj.2020.61.4.331
pmid: 32233176
|
[24] |
Lian CJ, Wang XD, Qiu XJ, et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction[J]. Bone Res, 2019, 7: 8.
doi: 10.1038/s41413-019-0046-y
pmid: 30854241
|
[25] |
Wann AKT, Knight MM. Primary cilia elongation in response to interleukin-1 mediates the inflammatory response[J]. Cell Mol Life Sci, 2012, 69(17):2967-2977.
doi: 10.1007/s00018-012-0980-y
pmid: 22481441
|
[26] |
Zhou HQ, Wu S, Ling HX, et al. Primary cilia: A cellular regulator of articular cartilage degeneration[J]. Stem Cells Int, 2022, 2022: 2560441.
|
[27] |
Coveney CR, Zhu LY, Miotla-Zarebska J, et al. Role of ciliary protein intraflagellar transport protein 88 in the regulation of cartilage thickness and osteoarthritis development in mice[J]. Arthritis Rheumatol, 2022, 74(1):49-59.
|
[28] |
Kitami M, Yamaguchi H, Ebina M, et al. IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage[J]. Biochem Biophys Res Commun, 2019, 509(1):222-226.
|
[29] |
Thompson CL, Wiles A, Poole CA, et al. Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling[J]. FASEB J, 2016, 30(2):716-726.
doi: 10.1096/fj.15-274944
pmid: 26499268
|
[30] |
Fu S, Thompson CL, Ali A, et al. Mechanical loading inhibits cartilage inflammatory signalling via an HDAC6 and IFT-dependent mechanism regulating primary cilia elongation[J]. Osteoarthritis Cartilage, 2019, 27(7):1064-1074.
|