Stomatology ›› 2025, Vol. 45 ›› Issue (7): 488-494.doi: 10.13591/j.cnki.kqyx.2025.07.002
• Basic and Clinical Research • Previous Articles Next Articles
GAO Yue1,2,3, PAN Yongchu1,2,3()
Received:
2025-02-10
Online:
2025-07-28
Published:
2025-07-24
CLC Number:
GAO Yue, PAN Yongchu. rs71518324 in PRKAR1B was associated with the risk of non-syndromic cleft lip with or without cleft palate[J]. Stomatology, 2025, 45(7): 488-494.
Tab.1
Demographic characteristic information of genome-wide association study"
队列阶段 | 组别 | 例数 | 年龄 ($\bar{x}±s$)/岁 | 性别n(%) | |
---|---|---|---|---|---|
男 | 女 | ||||
一阶段 | 病例组 | 504 | 1.51±0.51 | 308(61.11) | 196(38.89) |
对照组 | 455 | 0.00±0.00 | 236(51.87) | 219(48.13) | |
二阶段 | 病例组 | 565 | 4.53±6.92 | 374(66.19) | 191(33.81) |
对照组 | 1 269 | 10.71±2.43 | 428(33.73) | 841(66.27) | |
总计 | 病例组 | 1 069 | 3.10±8.31 | 682(63.80) | 387(36.20) |
对照组 | 1 724 | 7.88±4.82 | 664(38.51) | 1 060(61.49) |
Tab.2
Genes significantly correlated with NSCL/P after gene-based association analysis"
基因名称 | 染色体 | 起始位置 | 结束位置 | SNP数量 | Za | Pb | 类别 |
---|---|---|---|---|---|---|---|
CLSPN | 1 | 36185819 | 36235568 | 46 | 2.77 | 0.003 | 细胞凋亡 |
TGFBR3 | 1 | 92145902 | 92371892 | 543 | 1.89 | 0.029 | 细胞凋亡 |
NTRK1 | 1 | 156785432 | 156851642 | 75 | 2.65 | 0.004 | 细胞凋亡 |
BCL2L11 | 2 | 111876955 | 111926024 | 72 | 2.77 | 0.003 | 细胞凋亡 |
MYD88 | 3 | 38179969 | 38184513 | 1 | 2.28 | 0.011 | 细胞凋亡 |
ARHGAP10 | 4 | 148653214 | 148993931 | 430 | 1.74 | 0.041 | 细胞凋亡 |
IRF2 | 4 | 185308867 | 185395734 | 216 | 2.07 | 0.019 | 细胞焦亡 |
UNC5A | 5 | 176237478 | 176307897 | 46 | 2.22 | 0.013 | 细胞凋亡 |
PRKAR1B | 7 | 588834 | 767287 | 318 | 2.06 | 0.020 | 细胞凋亡 |
CDKN2A | 9 | 21967751 | 21995300 | 23 | 1.76 | 0.040 | 细胞凋亡 |
CAMK2G | 10 | 75572259 | 75634343 | 85 | 1.71 | 0.044 | 坏死性凋亡 |
CHUK | 10 | 101948055 | 101989376 | 71 | 2.17 | 0.015 | 细胞凋亡 |
MGMT | 10 | 131265448 | 131566271 | 680 | 2.15 | 0.016 | 细胞凋亡 |
CASP5 | 11 | 104864962 | 104893895 | 30 | 1.68 | 0.047 | 细胞焦亡 |
CCND2 | 12 | 4382938 | 4414516 | 66 | 2.18 | 0.015 | 细胞凋亡 |
KRT18 | 12 | 53342655 | 53346685 | 4 | 1.92 | 0.027 | 细胞凋亡 |
ITGA5 | 12 | 54789045 | 54813244 | 4 | 2.23 | 0.013 | 细胞凋亡 |
HMGB1 | 13 | 31032884 | 31191734 | 224 | 1.82 | 0.035 | 坏死性凋亡 |
IRF9 | 14 | 24630262 | 24635774 | 4 | 2.00 | 0.023 | 坏死性凋亡 |
LGALS3 | 14 | 55590828 | 55612126 | 55 | 1.78 | 0.037 | 细胞凋亡 |
PSMA3 | 14 | 58711549 | 58738730 | 23 | 1.98 | 0.024 | 细胞凋亡 |
HSP90AA1 | 14 | 102547075 | 102606036 | 47 | 2.17 | 0.015 | 坏死性凋亡 |
BCL2L10 | 15 | 52401460 | 52404972 | 10 | 2.23 | 0.013 | 细胞凋亡 |
CYLD | 16 | 50775961 | 50835846 | 51 | 1.73 | 0.042 | 细胞凋亡 |
MMP2 | 16 | 55423612 | 55540603 | 389 | 2.86 | 0.002 | 细胞凋亡 |
ALOX15 | 17 | 4534197 | 4545589 | 6 | 1.77 | 0.038 | 坏死性凋亡 |
PLA2G4C | 19 | 48551100 | 48614074 | 194 | 2.03 | 0.021 | 坏死性凋亡 |
PSMF1 | 20 | 1093906 | 1160596 | 96 | 1.71 | 0.043 | 细胞凋亡 |
SPATA2 | 20 | 48519928 | 48532080 | 34 | 1.99 | 0.023 | 坏死性凋亡 |
[1] |
Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: Understanding genetic and environmental influences[J]. Nat Rev Genet, 2011, 12(3): 167-178.
doi: 10.1038/nrg2933 pmid: 21331089 |
[2] | Sollis E, Mosaku A, Abid A, et al. The NHGRI-EBI GWAS catalog: Knowledgebase and deposition resource[J]. Nucleic Acids Res, 2023, 51(D1): D977-D985. |
[3] | Qi ZH, Zhu LL, Wang KK, et al. PANoptosis: Emerging mechanisms and disease implications[J]. Life Sci, 2023, 333: 122158. |
[4] |
Ke FFS, Vanyai HK, Cowan AD, et al. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK[J]. Cell, 2018, 173(5): 1217-1230. e17.
doi: S0092-8674(18)30567-1 pmid: 29775594 |
[5] | Lu Y, Liang MM, Zhang QJ, et al. Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelial-mesenchymal transition(EMT)[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(9): 2356-2367. |
[6] |
Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81(3): 559-575.
doi: 10.1086/519795 pmid: 17701901 |
[7] | 1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1 092 human genomes[J]. Nature, 2012, 491(7422): 56-65. |
[8] |
Willer CJ, Li Y, Abecasis GR. METAL: Fast and efficient meta-analysis of genomewide association scans[J]. Bioinformatics, 2010, 26(17): 2190-2191.
doi: 10.1093/bioinformatics/btq340 pmid: 20616382 |
[9] | Wang WX, Lu JC, Pan NY, et al. Identification of early Alzheimer’s disease subclass and signature genes based on PANoptosis genes[J]. Front Immunol, 2024, 15: 1462003. |
[10] | Song F, Wang CG, Mao JZ, et al. PANoptosis-based molecular subtyping and HPAN-index predicts therapeutic response and survival in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1197152. |
[11] |
Ye Y, Dai QJ, Qi HB. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer[J]. Cell Death Discov, 2021, 7(1): 71.
doi: 10.1038/s41420-021-00451-x pmid: 33828074 |
[12] | Ward LD, Kellis M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants[J]. Nucleic Acids Res, 2012, 40(Database issue): D930-D934. |
[13] | Dong SC, Zhao NX, Spragins E, et al. Annotating and prioritizing human non-coding variants with RegulomeDB v. 2[J]. Nat Genet, 2023, 55(5): 724-726. |
[14] | Liu H, Duncan K, Helverson A, et al. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18[J]. eLife, 2020, 9: e51325. |
[15] | Schuler RE, Bugacov A, Hacia JG, et al. FaceBase: A community-driven hub for data-intensive research[J]. J Dent Res, 2022, 101(11): 1289-1298. |
[16] | Feng WG, Leach SM, Tipney H, et al. Spatial and temporal analysis of gene expression during growth and fusion of the mouse facial prominences[J]. PLoS One, 2009, 4(12): e8066. |
[17] |
Leach SM, Feng WG, Williams T. Gene expression profile data for mouse facial development[J]. Data Brief, 2017, 13: 242-247.
doi: 10.1016/j.dib.2017.05.003 pmid: 28856179 |
[18] | Li H, Jones KL, Hooper JE, et al. The molecular anatomy of mammalian upper lip and primary palate fusion at single cell resolution[J]. Development, 2019, 146(12): dev174888. |
[19] |
Butler A, Hoffman P, Smibert P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat Biotechnol, 2018, 36(5): 411-420.
doi: 10.1038/nbt.4096 pmid: 29608179 |
[20] | Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646. |
[21] |
Gritli-Linde A. The etiopathogenesis of cleft lip and cleft palate: Usefulness and caveats of mouse models[J]. Curr Top Dev Biol, 2008, 84: 37-138.
doi: 10.1016/S0070-2153(08)00602-9 pmid: 19186243 |
[22] | Mukhopadhyay N, Feingold E, Moreno-Uribe L, et al. Genome-wide association study of multiethnic nonsyndromic orofacial cleft families identifies novel loci specific to family and phenotypic subtypes[J]. Genet Epidemiol, 2022, 46(3/4): 182-198. |
[23] | Lei R, Zhang K, Wei YX, et al. G-protein α-subunit Gsα is required for craniofacial morphogenesis[J]. PLoS One, 2016, 11(2): e0147535. |
[24] |
Weivoda MM, Ruan M, Hachfeld CM, et al. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways[J]. J Bone Miner Res, 2019, 34(8): 1546-1548.
doi: 10.1002/jbmr.3740 pmid: 31415114 |
[25] | Ould Amer Y, Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know?[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9): 868-877. |
[26] |
Happ JT, Arveseth CD, Bruystens J, et al. A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction[J]. Nat Struct Mol Biol, 2022, 29(10): 990-999.
doi: 10.1038/s41594-022-00838-z pmid: 36202993 |
[27] | Yang RC, Chu HS, Yue H, et al. BMP signaling maintains auricular chondrocyte identity and prevents Microtia development by inhibiting protein kinase A[J]. eLife, 2024, 12: RP91883. |
[28] |
Ohta Y, Nakagawa K, Imai Y, et al. Cyclic AMP enhances Smad-mediated BMP signaling through PKA-CREB pathway[J]. J Bone Miner Metab, 2008, 26(5): 478-484.
doi: 10.1007/s00774-008-0850-8 pmid: 18758906 |
[29] | Li J, Hao LY, Wu JH, et al. Linarin promotes osteogenic differentiation by activating the BMP-2/RUNX2 pathway protein kinase A signaling[J]. Int J Mol Med, 2016, 37(4): 901-910. |
[30] |
Hu DE, Young NM, Li X, et al. A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face[J]. Development, 2015, 142(3): 567-574.
doi: 10.1242/dev.114835 pmid: 25605783 |
[31] |
Kurosaka H, Iulianella A, Williams T, et al. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis[J]. J Clin Invest, 2014, 124(4): 1660-1671.
doi: 10.1172/JCI72688 pmid: 24590292 |
[32] |
Ferretti E, Li BS, Zewdu R, et al. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis[J]. Dev Cell, 2011, 21(4): 627-641.
doi: 10.1016/j.devcel.2011.08.005 pmid: 21982646 |
[33] | Carroll SH, Macias Trevino C, Li EB, et al. An Irf6- Esrp1/2 regulatory axis controls midface morphogenesis in vertebrates[J]. Development, 2020, 147(24): dev194498. |
[34] |
Monsoro-Burq AH, Wang E, Harland R. Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction[J]. Dev Cell, 2005, 8(2): 167-178.
doi: 10.1016/j.devcel.2004.12.017 pmid: 15691759 |
[35] |
Alappat S, Zhang ZY, Chen YP. Msx homeobox gene family and craniofacial development[J]. Cell Res, 2003, 13(6): 429-442.
doi: 10.1038/sj.cr.7290185 pmid: 14728799 |
[36] | Leathers TA, Rogers CD. Time to go: Neural crest cell epithelial-to-mesenchymal transition[J]. Development, 2022, 149(15): dev200712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||