Stomatology ›› 2023, Vol. 43 ›› Issue (8): 757-762.doi: 10.13591/j.cnki.kqyx.2023.08.017
• Summary • Previous Articles Next Articles
Dilibaier·YIMINGJIANG 1,Duolikun·WUFUER 2()
Revised:
2023-01-08
Online:
2023-08-28
Published:
2023-08-23
CLC Number:
Dilibaier·YIMINGJIANG , Duolikun·WUFUER . Recent research progress of pathogenic gene and diagnosis of non-syndromic cleft lip and palate[J]. Stomatology, 2023, 43(8): 757-762.
[1] |
Fan DZ, Wu SZ, Liu L, et al. Prevalence of non-syndromic orofacial clefts: Based on 15, 094, 978 Chinese perinatal infants[J]. Oncotarget, 2018, 9(17):13981-13990.
doi: 10.18632/oncotarget.v9i17 |
[2] | 杨梦夕, 王艺儒, 殷斌, 等. 可溶性环氧化物水解酶2基因与中国汉族人群非综合征型唇腭裂的关联研究[J]. 华西口腔医学杂志, 2022, 40(3):279-284. |
[3] |
Butali A, Mossey PA, Adeyemo WL, et al. Genomic analyses in African populations identify novel risk loci for cleft palate[J]. Hum Mol Genet, 2019, 28(6):1038-1051.
doi: 10.1093/hmg/ddy402 pmid: 30452639 |
[4] | 侯亚丽, 马利. 亚洲人群干扰素调节因子6基因多态性与非综合征型唇腭裂相关性研究的Meta分析[J]. 国际口腔医学杂志, 2020, 47(4):397-405. |
[5] |
Chen Y, He DQ, Chen LY, et al. Transforming growth factor alpha taq I polymorphisms and nonsyndromic cleft lip and/or palate risk: A meta-analysis[J]. Cleft Palate Craniofac J, 2018, 55(6):814-820.
doi: 10.1597/16-008 |
[6] |
程忠委, 宋庆高. Sp基因与Wnt基因对胚胎发育异常及唇腭裂的影响[J]. 口腔疾病防治, 2019, 27(6):396-399.
doi: 10.12016/j.issn.2096-1456.2019.06.011 |
[7] |
Saleem K, Zaib T, Sun WJ, et al. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate[J]. Heliyon, 2019, 5(12):e03019.
doi: 10.1016/j.heliyon.2019.e03019 |
[8] |
Vijayan V, Ummer R, Weber R, et al. Association of WNT pathway genes with nonsyndromic cleft lip with or without cleft palate[J]. Cleft Palate Craniofacial J, 2018, 55(3):335-341.
doi: 10.1177/1055665617732782 |
[9] |
Wang MY, Yuan Y, Wang ZF, et al. Prevalence of orofacial clefts among live births in China: A systematic review and meta-analysis[J]. Birth Defects Res, 2017, 109(13):1011-1019.
doi: 10.1002/bdr2.1043 pmid: 28635078 |
[10] | Wang YR, Shi JY, Zheng Q, et al. Gene-gene interactions between BMP4 and ARHGAP29 among non-syndromic cleft lip only (NSCLO) trios from western Han Chinese population[J]. Int J Clin Exp Pathol, 2020, 13(2):295-301. |
[11] |
Chen SY, Jia ZL, Cai M, et al. SP1-mediated upregulation of long noncoding RNA ZFAS1 involved in non-syndromic cleft lip and palate via inactivating WNT/β-catenin signaling pathway[J]. Front Cell Dev Biol, 2021, 9: 662780.
doi: 10.3389/fcell.2021.662780 |
[12] | Nakatomi M, Ludwig KU, Knapp M, et al. Msx1 deficiency interacts with hypoxia and induces a morphogenetic regulation during mouse lip development[J]. Development, 2020, 147(21):dev189175. |
[13] |
Fu CY, Lou S, Zhu GR, et al. Identification of new miRNA-mRNA networks in the development of non-syndromic cleft lip with or without cleft palate[J]. Front Cell Dev Biol, 2021, 9: 631057.
doi: 10.3389/fcell.2021.631057 |
[14] |
Yoshioka H, Li AM, Suzuki A, et al. Identification of microRNAs and gene regulatory networks in cleft lip common in humans and mice[J]. Hum Mol Genet, 2021, 30(19):1881-1893.
doi: 10.1093/hmg/ddab151 pmid: 34104955 |
[15] |
Tang J, Lian SB, Bai Y, et al. Comprehensive analysis of plasma miRNA and related ceRNA network in non-syndromic cleft lip and/or palate[J]. Int J Pediatr Otorhinolaryngol, 2022, 162: 111306.
doi: 10.1016/j.ijporl.2022.111306 |
[16] |
Lou S, Ma L, Kan SY, et al. Association study of genetic variants in autophagy pathway and risk of non-syndromic cleft lip with or without cleft palate[J]. Front Cell Dev Biol, 2020, 8: 576.
doi: 10.3389/fcell.2020.00576 pmid: 32766242 |
[17] |
Imani MM, Rahimi R, Sadeghi M. Linkage and association of PAX7 polymorphisms (rs742071, rs766325, and rs4920520) with the risk of non-syndromic cleft lip with/without cleft palate: A systematic review and meta-analysis[J]. Meta Gene, 2022, 31: 101007.
doi: 10.1016/j.mgene.2021.101007 |
[18] |
Khan MI, Cs P, Srinath N. Role of PAX7 gene rs766325 and rs4920520 polymorphisms in the etiology of non-syndromic cleft lip and palate: A genetic study[J]. Glob Med Genet, 2022, 9(3):208-211.
doi: 10.1055/s-0042-1748531 |
[19] | Soleymani M, Ebadifar A, Khosravi M, et al. Association of rs2013162 and rs2235375 polymorphisms in IRF6 gene with susceptibility to non-syndromic cleft lip and palate[J]. Avicenna J Med Biotechnol, 2022: 181-185. |
[20] |
Nasroen SL, Maskoen AM, Soedjana H, et al. IRF6 rs2235371 as a risk factor for non-syndromic cleft palate only among the Deutero-Malay race in Indonesia and its effect on the IRF6 mRNA expression level[J]. Dent Med Probl, 2022, 59(1):59-65.
doi: 10.17219/dmp/142760 |
[21] | Lee S, Sears MJ, Zhang ZJ, et al. Cleft lip and cleft palate in Esrp1 knockout mice is associated with alterations in epithelial-mesenchymal crosstalk[J]. Development, 2020, 147(21):dev187369. |
[22] | Pan YC, Ma L, Lou S, et al. Exploration of genetic variants of non-syndromic cleft lip with or without palate and underlying mechanisms.[J]. Chin J Dent Res, 2022, 25(1):21-27. |
[23] |
Li MJ, Shi JY, Zhu QS, et al. Targeted re-sequencing of the 2p21 locus identifies non-syndromic cleft lip only novel susceptibility gene ZFP36L2[J]. Front Genet, 2022, 13: 802229.
doi: 10.3389/fgene.2022.802229 |
[24] |
Cui RJ, Chen DL, Li N, et al. PARD3 gene variation as candidate cause of nonsyndromic cleft palate only[J]. J Cell Mol Med, 2022, 26(15):4292-4304.
doi: 10.1111/jcmm.17452 pmid: 35789100 |
[25] |
Tao HX, Shi JY, Lin YS, et al. Rs9891446 in NTN1 is associated with right-side cleft lip in Han Chinese population[J]. Arch Oral Biol, 2022, 141: 105485.
doi: 10.1016/j.archoralbio.2022.105485 |
[26] |
Juriloff DM, Harris MJ, Mager DL, et al. Epigenetic mechanism causes Wnt9b deficiency and nonsyndromic cleft lip and palate in the A/WySn mouse strain[J]. Birth Defects Res A Clin Mol Teratol, 2014, 100(10):772-788.
doi: 10.1002/bdra.v100.10 |
[27] |
Maili L, Letra A, Silva R, et al. PBX-WNT-P63-IRF6 pathway in nonsyndromic cleft lip and palate[J]. Birth Defects Res, 2020, 112(3):234-244.
doi: 10.1002/bdr2.v112.3 |
[28] | 王梦莹, 李文咏, 周仁, 等. WNT信号通路基因位点单体型与中国汉族人群非综合征型唇腭裂发病风险的关联[J]. 北京大学学报(医学版), 2022, 54(3):394-399. |
[29] | Hong JW, Yu Y, Wang LS, et al. BMP4 regulates EMT to be involved in non-syndromic cleft lip with or without palate[J]. Cleft Palate Craniofacial J, 2022: 105566562211057. |
[30] | Avasthi KK, Agarwal A, Agarwal S. Association of MTHFR, BMP4, TGFA and IRF6 polymorphisms with non-syndromic cleft lip and palate in north Indian patients[J]. Avicenna J Med Biotechnol, 2022, 14(2):175-180. |
[31] |
Bahrami R, Alireza Dastgheib S, Niktabar SM, et al. Association of BMP4 rs17563 polymorphism with nonsyndromic cleft lip with or without cleft palate risk: Literature review and comprehensive meta-analysis[J]. Fetal Pediatr Pathol, 2021, 40(4):305-319.
doi: 10.1080/15513815.2019.1707916 |
[32] |
Yoshioka H, Mikami Y, Ramakrishnan SS, et al. MicroRNA-124-3p plays a crucial role in cleft palate induced by retinoic acid[J]. Front Cell Dev Biol, 2021, 9: 621045.
doi: 10.3389/fcell.2021.621045 |
[33] |
Yoshioka H, Suzuki A, Iwaya C, et al. Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice[J]. Development, 2022, 149(9):dev200476.
doi: 10.1242/dev.200476 |
[34] |
Satake K, Ishii T, Morikawa T, et al. Quercetin reduces the development of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced cleft palate in mice by suppressing CYP1A1 via the aryl hydrocarbon receptor[J]. Nutrients, 2022, 14(12):2448.
doi: 10.3390/nu14122448 |
[35] |
Young JI, Slifer S, Hecht JT, et al. DNA methylation variation is identified in monozygotic twins discordant for non-syndromic cleft lip and palate[J]. Front Cell Dev Biol, 2021, 9: 656865.
doi: 10.3389/fcell.2021.656865 |
[36] |
Alvizi L, Brito LA, Kobayashi GS, et al. mir152 hypomethylation as a-mechanism for non-syndromic cleft lip and palate[J]. Epigenetics, 2022, 17(13):2278-2295.
doi: 10.1080/15592294.2022.2115606 |
[37] |
Egbunah UP, Adekunle AA, Adeyemo WL. Knowledge of environmental and genetic risk factors for cleft lip and palate among dwellers of a suburban community in Nigeria[J]. West Afr J Med, 2022, 39(5):478-485.
pmid: 35633627 |
[38] |
Jia SS, Zhang Q, Wang Y, et al. Identification by RNA-Seq of let-7 clusters as prenatal biomarkers for nonsyndromic cleft lip with palate[J]. Ann N Y Acad Sci, 2022, 1516(1):234-246.
doi: 10.1111/nyas.v1516.1 |
[39] | Jia SS, Zhang Q, Wang Y, et al. PIWI-interacting RNA sequencing profiles in maternal plasma-derived exosomes reveal novel non-invasive prenatal biomarkers for the early diagnosis of nonsyndromic cleft lip and palate[J]. eBio Medicine, 2021, 65: 103253. |
[40] |
Lachmann R, Brückmann A. Re: Absent ‘superimposed-line’ sign: Novel marker in early diagnosis of cleft of fetal secondary palate[J]. Ultrasound Obstet Gynecol, 2021, 58(6):954-955.
doi: 10.1002/uog.23124 pmid: 34855294 |
[41] | Yan X, Xing GJ, Wang X, et al. Diagnostic value and application of prenatal MRI and ultrasound in fetal cleft lip and palate[J]. Contrast Media Mol Imaging, 2022, 2022: 9410161. |
[42] | Li XL, Xiu GH, Yan F, et al. First-trimester evaluation of cleft lip and palate by a novel two-dimensional sonographic technique: A prospective study[J]. Curr Med Imaging, 2023, 19(3):278-285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||