Stomatology ›› 2025, Vol. 45 ›› Issue (9): 696-700.doi: 10.13591/j.cnki.kqyx.2025.09.010
• Review • Previous Articles Next Articles
HAO Yandi1,2, LIU Ye1, GAO Pengyu3, YANG Jingshu1,2, XU Quanchen1,2()
Received:
2024-12-10
Online:
2025-09-28
Published:
2025-09-11
CLC Number:
HAO Yandi, LIU Ye, GAO Pengyu, YANG Jingshu, XU Quanchen. Research progress of the relationship between macrophages and periodontitis[J]. Stomatology, 2025, 45(9): 696-700.
[1] | Cui Y, Hong SB, Xia YH, et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci(Weinh), 2023, 10(27): e2302029. |
[2] | Chen RR, Ji YT, Li T, et al. Anti-Porphyromonas gingivalis nanotherapy for maintaining bacterial homeostasis in periodontitis[J]. Int J Antimicrob Agents, 2023, 61(6): 106801. |
[3] | Liu JQ, Dan RC, Zhou XM, et al. Immune senescence and periodontitis: From mechanism to therapy[J]. J Leukoc Biol, 2022, 112(5): 1025-1040. |
[4] | Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease[J]. Pharmacol Ther, 2022, 229: 107919. |
[5] | Alkakhan W, Farrar N, Sikora V, et al. Statins modulate microenvironmental cues driving macrophage polarization in simulated periodontal inflammation[J]. Cells, 2023, 12(15): 1961. |
[6] | Yin LY, Li XZ, Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair[J]. Jpn Dent Sci Rev, 2022, 58: 336-347. |
[7] | Dou L, Shi XM, He XS, et al. Macrophage phenotype and function in liver disorder[J]. Front Immunol, 2020, 10: 3112. |
[8] |
Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10: 1462.
doi: 10.3389/fimmu.2019.01462 pmid: 31333642 |
[9] |
Gharavi AT, Hanjani NA, Movahed E, et al. The role of macrophage subtypes and exosomes in immunomodulation[J]. Cell Mol Biol Lett, 2022, 27(1): 83.
doi: 10.1186/s11658-022-00384-y pmid: 36192691 |
[10] |
Ma YG, Kemp SS, Yang XY, et al. Cellular mechanisms underlying the impairment of macrophage efferocytosis[J]. Immunol Lett, 2023, 254: 41-53.
doi: 10.1016/j.imlet.2023.02.001 pmid: 36740099 |
[11] | 谭海鹏, 黄浙勇. 巨噬细胞对凋亡细胞的清除及炎症调控作用[J]. 复旦学报(医学版), 2020, 47(6): 911-916. |
[12] | Razi S, Yaghmoorian Khojini J, Kargarijam F, et al. Macrophage efferocytosis in health and disease[J]. Cell Biochem Funct, 2023, 41(2): 152-165. |
[13] |
Horst AK, Tiegs G, Diehl L. Contribution of macrophage efferocytosis to liver homeostasis and disease[J]. Front Immunol, 2019, 10: 2670.
doi: 10.3389/fimmu.2019.02670 pmid: 31798592 |
[14] | 耿锐, 陆军. 巨噬细胞的胞葬作用与炎症性疾病关系的研究进展[J]. 东南大学学报(医学版), 2023, 42(3): 466-474. |
[15] | Peng SM, Fu HJ, Li R, et al. A new direction in periodontitis treatment: Biomaterial-mediated macrophage immunotherapy[J]. J Nanobiotechnology, 2024, 22(1): 359. |
[16] | Muñoz J, Akhavan NS, Mullins AP, et al. Macrophage polariza-tion and osteoporosis: A review[J]. Nutrients, 2020, 12(10): 2999. |
[17] |
Ruytinx P, Proost P, Van Damme J, et al. Chemokine-induced macrophage polarization in inflammatory conditions[J]. Front Immunol, 2018, 9: 1930.
doi: 10.3389/fimmu.2018.01930 pmid: 30245686 |
[18] | Sun X, Gao J, Meng X, et al. Polarized macrophages in periodontitis: Characteristics, function, and molecular signaling[J]. Front Immunol, 2021, 12: 763334. |
[19] | Lew JH, Naruishi K, Kajiura Y, et al. High glucose-mediated cytokine regulation in gingival fibroblasts and THP-1 macrophage: A possible mechanism of severe periodontitis with diabetes[J]. Cell Physiol Biochem, 2018, 50(3): 973-986. |
[20] |
Gonzalez OA, Novak MJ, Kirakodu S, et al. Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues[J]. Immunol Invest, 2015, 44(7): 643-664.
doi: 10.3109/08820139.2015.1070269 pmid: 26397131 |
[21] | Clark D, Halpern B, Miclau T, et al. The contribution of macrophages in old mice to periodontal disease[J]. J Dent Res, 2021, 100(12): 1397-1404. |
[22] | Wang Y, Shi RT, Zhai R, et al. Matrix stiffness regulates macrophage polarization in atherosclerosis[J]. Pharmacol Res, 2022, 179: 106236. |
[23] |
Yao YL, Xu XH, Jin LP. Macrophage polarization in physiological and pathological pregnancy[J]. Front Immunol, 2019, 10: 792.
doi: 10.3389/fimmu.2019.00792 pmid: 31037072 |
[24] |
Garlet GP, Giannobile WV. Macrophages: The bridge between inflammation resolution and tissue repair?[J]. J Dent Res, 2018, 97(10): 1079-1081.
doi: 10.1177/0022034518785857 pmid: 29993304 |
[25] | Chen XT, Wan Z, Yang L, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis modelsIL-10 mRNA[J]. J Nanobiotechnology, 2022, 20(1): 110. |
[26] | Miao YB, He LT, Qi XY, et al. Injecting immunosuppressive M2 macrophages alleviates the symptoms of periodontitis in mice[J]. Front Mol Biosci, 2020, 7: 603817. |
[27] | Wang WZ, Zheng CX, Yang JH, et al. Intersection between macrophages and periodontal pathogens in periodontitis[J]. J Leukoc Biol, 2021, 110(3): 577-583. |
[28] |
Kourtzelis I, Hajishengallis G, Chavakis T. Phagocytosis of apoptotic cells in resolution of inflammation[J]. Front Immunol, 2020, 11: 553.
doi: 10.3389/fimmu.2020.00553 pmid: 32296442 |
[29] | Tajbakhsh A, Kovanen PT, Rezaee M, et al. Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis[J]. Int J Biochem Cell Biol, 2020, 120: 105684. |
[30] |
Gerlach BD, Ampomah PB, Yurdagul A Jr, et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury[J]. Cell Metab, 2021, 33(12): 2445-2463. e8.
doi: 10.1016/j.cmet.2021.10.015 pmid: 34784501 |
[31] |
Kourtzelis I, Li XF, Mitroulis I, et al. DEL-1 promotes macroph-age efferocytosis and clearance of inflammation[J]. Nat Immunol, 2019, 20(1): 40-49.
doi: 10.1038/s41590-018-0249-1 pmid: 30455459 |
[32] | Liu J, Ruan JP, Weir MD, et al. Periodontal bone-ligament-cementum regenerationscaffolds and stem cells[J]. Cells, 2019, 8(6): 537. |
[33] | Kwon T, Lamster IB, Levin L. Current concepts in the manage-ment of periodontitis[J]. Int Dent J, 2021, 71(6):462-476. |
[34] |
Tahamtan S, Shirban F, Bagherniya M, et al. The effects of statins on dental and oral health: A review of preclinical and clinical studies[J]. J Transl Med, 2020, 18(1): 155.
doi: 10.1186/s12967-020-02326-8 pmid: 32252793 |
[35] | Guo XQ, Huang ZJ, Ge Q, et al. Glipizide alleviates periodontitis pathogenicityinhibition of angiogenesis, osteoclastogenesis and M1/M2 macrophage ratio in periodontal tissue[J]. Inflammation, 2023, 46(5): 1917-1931. |
[36] |
Ren JL, Han X, Lohner H, et al. Serum- and glucocorticoid-inducible kinase 1 promotes alternative macrophage polarization and restrains inflammation through FoxO1 and STAT3 signaling[J]. J Immunol, 2021, 207(1): 268-280.
doi: 10.4049/jimmunol.2001455 pmid: 34162726 |
[37] | Wu XW, Wang YD, Chen HT, et al. Phosphatase and tensin homologue determine inflammatory status by differentially regulating the expression of Akt1 and Akt2 in macrophage alternative polarization of periodontitis[J]. J Clin Periodontol, 2023, 50(2): 220-231. |
[38] |
孙一帆, 洪丽华. 牙源性干细胞来源的外泌体在牙周组织再生中的研究进展[J]. 口腔医学研究, 2024, 40(4): 287-292.
doi: 10.13701/j.cnki.kqyxyj.2024.04.002 |
[39] |
Nakao Y, Fukuda T, Zhang QZ, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater, 2021, 122: 306-324.
doi: 10.1016/j.actbio.2020.12.046 pmid: 33359765 |
[40] | Qiao X, Tang J, Dou L, et al. Dental pulp stem cell-derived exosomes regulate anti-inflammatory and osteogenesis in periodontal ligament stem cells and promote the repair of experimental periodontitis in rats[J]. Int J Nanomedicine, 2023, 18: 4683-4703. |
[41] | Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in micea macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126. |
[42] | Zhu FJ, Wang SL, Zhu XL, et al. Potential effects of biomaterials on macrophage function and their signalling pathways[J]. Biomater Sci, 2023, 11(21): 6977-7002. |
[43] | 王钰. 负载槲皮素的二氧化铈纳米粒子调控巨噬细胞极化治疗牙周炎的研究[D]. 长春: 吉林大学, 2022. |
[44] | Yang SY, Hu Y, Zhao R, et al. Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitisthe miR-21a-5p/PDCD4/NF-κB pathway[J]. J Nanobiotechnology, 2024, 22(1): 94. |
[45] | Wang SR, Li CY, Chen S, et al. Multifunctional bilayer nanofibrous membrane enhances periodontal regeneration mesenchymal stem cell recruitment and macrophage polarization[J]. Int J Biol Macromol, 2024, 273(Pt 1): 132924. |
[46] | Chen B, Li SY, Chang YQ, et al. Macrophages contribute to periodontal wound healing mainly in the tissue proliferation stage[J]. J Periodontal Res, 2023, 58(1): 122-130. |
[47] | Glinton KE, Ma WS, Lantz C, et al. Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation[J]. J Clin Invest, 2022, 132(9): e140685. |
[48] |
Li B, Xin ZL, Gao SY, et al. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis[J]. Theranostics, 2023, 13(1): 231-249.
doi: 10.7150/thno.78878 pmid: 36593966 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||