口腔医学 ›› 2025, Vol. 45 ›› Issue (3): 218-222.doi: 10.13591/j.cnki.kqyx.2025.03.011
收稿日期:
2024-06-13
出版日期:
2025-03-28
发布日期:
2025-03-18
通讯作者:
蒋备战
E-mail:jiangbeizhan@tongji.edu.cn
基金资助:
LIU Yuan, YAN Yanhong, JIANG Beizhan()
Received:
2024-06-13
Online:
2025-03-28
Published:
2025-03-18
Contact:
JIANG Beizhan
E-mail:jiangbeizhan@tongji.edu.cn
摘要:
牙髓再生是目前牙髓病学研究的热点课题。随着再生医学的发展,牙髓再生正从基础研究向临床应用转化,并在一些病例中观察到了比较稳定的结果,但实现更高的成功率和恢复牙髓的功能仍然是牙髓病学领域的一个挑战。干细胞、生长因子和支架材料是组织工程的基本要素。近年来牙髓再生相关支架受到广泛关注,无论是天然来源的、人体来源的还是人工合成的支架材料都取得了新的进展。该文就牙髓再生的支架材料进行综述,旨在为牙髓再生支架材料的选择提供参考。
中图分类号:
刘塬, 颜燕宏, 蒋备战. 牙髓再生支架材料的研究进展[J]. 口腔医学, 2025, 45(3): 218-222.
LIU Yuan, YAN Yanhong, JIANG Beizhan. Research progress of scaffold materials for dental pulp regeneration[J]. Stomatology, 2025, 45(3): 218-222.
表1
APC用于牙髓再生的体内外研究"
参考文献 | APC | 结果 |
---|---|---|
Narang等[ | PRF和PRP | 临床研究表明,PRF加速牙髓坏死的未成熟恒牙牙根生长,促进作用优于PRP和血凝块 |
Zhou等[ | PRF | PRF联合血凝块可促进比格犬根尖周愈合,促进牙根发育 |
Nageh等[ | PRF | PRF用于REPs,有助于恢复牙齿感觉 |
Ray等[ | PRF | 病例报告证明PRF促进REPs的临床效果 |
Hong等[ | CGF和PRF | CGF和PRF均能促进SCAP的增殖、迁移和分化 |
Xu等[ | CGF | 在体内外研究中,CGF以剂量依赖的方式促进暴露于LPS的DPSCs的增殖、迁移和分化,并且显示出抗炎作用 |
Jin等[ | CGF | CGF以剂量依赖的方式促进DPSCs的增殖,但高浓度的CGF抑制DPSCs的内皮细胞向分化和成牙本质细胞向分化 |
表2
用于牙髓再生的合成生物可降解聚合物的研究"
参考文献 | 种类 | 修饰方法 | 负载细胞 | 结果 |
---|---|---|---|---|
Terranova等[ | PLA和PCL | 单宁酸微粒修饰 | DPSCs | 单宁酸微粒修饰的薄膜支架模拟了ECM,维持细胞活性。将薄膜卷曲为锥形结构促进了细胞迁移。 |
Soares等[ | PLA | 将辛伐他汀和纳米纤维偶联支架 | 牙髓细胞 | 支架材料减轻了局部炎症,诱导DPSCs产生血管化的牙髓组织。 |
Chen等[ | PLGA | 明胶改性支架 | 牙囊干细胞 | 通过电纺排列的PLGA/明胶膜片促进了牙囊干细胞的分化,产生牙髓牙本质复合体样结构。 |
Galler等[ | 比较PEG、SAP、纤维蛋白和胶原 | DPSCs | 与PEG和SAP支架相比,天然材料,尤其是纤维蛋白,在细胞活力和牙髓组织形成方面更具优势。 | |
Demarco等[ | PLA | 模拟牙本质的多孔结构 | DPSCs | 模拟牙本质的形态可以影响DPSCs的行为,并诱导细胞分化产生牙髓组织。 |
Itoh等[ | 聚(N-异丙基丙 烯酰胺) | 热响应的水凝胶支架 | DPSCs | 热响应水凝胶在体内实验形成血管化的牙髓组织。 |
[1] |
Eramo S, Natali A, Pinna R, et al. Dental pulp regenerationvia cell homing[J]. Int Endod J, 2018, 51(4): 405-419.
doi: 10.1111/iej.12868 pmid: 29047120 |
[2] |
Lee C, Song MJ. Failure of regenerative endodontic procedures: Case analysis and subsequent treatment options[J]. J Endod, 2022, 48(9): 1137-1145.
doi: 10.1016/j.joen.2022.06.002 pmid: 35714726 |
[3] | Kobayashi E, Flückiger L, Fujioka-Kobayashi M, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF[J]. Clin Oral Investig, 2016, 20(9): 2353-2360. |
[4] | Arshad S, Tehreem F, Khan MR, et al. Platelet-rich fibrin used in regenerative endodontics and dentistry: Current uses, limitations, and future recommendations for application[J]. Int J Dent, 2021, 2021: 4514598. |
[5] | Zhang J, Wu JK, Lin XY, et al. Platelet-rich fibrin promotes the proliferation and osteo-/odontoblastic differentiation of human dental pulp stem cells[J]. Curr Stem Cell Res Ther, 2023, 18(4): 560-567. |
[6] |
Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, et al. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: A case series[J]. J Endod, 2017, 43(3): 401-408.
doi: S0099-2399(16)30743-9 pmid: 28131412 |
[7] | Simões-Pedro M, Tróia PMBPS, dos Santos NBM, et al. Tensile strength essay comparing three different platelet-rich fibrin membranes (L-PRF, A-PRF, and A-PRF+): A mechanical and structural in vitro evaluation[J]. Polymers, 2022, 14(7): 1392. |
[8] |
Qiao J, An N, Ouyang XY. Quantification of growth factors in different platelet concentrates[J]. Platelets, 2017, 28(8): 774-778.
doi: 10.1080/09537104.2016.1267338 pmid: 28277063 |
[9] | Zhang ML, Jiang F, Zhang XC, et al. The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration[J]. Stem Cells Transl Med, 2017, 6(12): 2126-2134. |
[10] |
Hong S, Li L, Cai W, et al. The potential application of concentrated growth factor in regenerative endodontics[J]. Int Endod J, 2019, 52(5): 646-655.
doi: 10.1111/iej.13045 pmid: 30471228 |
[11] | Tian SB, Wang J, Dong FS, et al. Concentrated growth factor promotes dental pulp cells proliferation and mineralization and facilitates recovery of dental pulp tissue[J]. Med Sci Monit, 2019, 25: 10016-10028. |
[12] | Li ZX, Liu L, Wang L, et al. The effects and potential applications of concentrated growth factor in dentin-pulp complex regeneration[J]. Stem Cell Res Ther, 2021, 12(1): 357. |
[13] | Nivedhitha MS, Jacob B, Ranganath A. Concentrated growth factor: A novel platelet concentrate for revascularization of immature permanent teeth—A report of two cases[J]. Case Rep Dent, 2020, 2020: 1329145. |
[14] | Narang I, Mittal N, Mishra N. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: A clinical study[J]. Contemp Clin Dent, 2015, 6(1): 63-68. |
[15] | Zhou RH, Wang YM, Chen YM, et al. Radiographic, histologic, and biomechanical evaluation of combined application of platelet-rich fibrin with blood clot in regenerative endodontics[J]. J Endod, 2017, 43(12): 2034-2040. |
[16] |
Nageh M, Ahmed GM, El-Baz AA. Assessment of regaining pulp sensibility in mature necrotic teeth using a modified revascularization technique with platelet-rich fibrin: A clinical study[J]. J Endod, 2018, 44(10): 1526-1533.
doi: S0099-2399(18)30441-2 pmid: 30174103 |
[17] |
Ray HLJr, Marcelino J, Braga R, et al. Long-term follow up of revascularization using platelet-rich fibrin[J]. Dent Traumatol, 2016, 32(1): 80-84.
doi: 10.1111/edt.12189 pmid: 26095129 |
[18] |
Hong SB, Chen WT, Jiang BZ. A comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla[J]. J Endod, 2018, 44(6): 977-983.
doi: S0099-2399(18)30168-7 pmid: 29703620 |
[19] | Xu FF, Qiao L, Zhao YM, et al. The potential application of concentrated growth factor in pulp regeneration: An in vitro and in vivo study[J]. Stem Cell Res Ther, 2019, 10(1): 134. |
[20] | Jin RZ, Song GT, Chai JH, et al. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro[J]. J Tissue Eng, 2018, 9: 2041731418817505. |
[21] |
Laschke MW, Später T, Menger MD. Microvascular fragments: More than just natural vascularization units[J]. Trends Biotechnol, 2021, 39(1): 24-33.
doi: 10.1016/j.tibtech.2020.06.001 pmid: 32593437 |
[22] |
Xu X, Liang C, Gao X, et al. Adipose tissue-derived microvascular fragments as vascularization units for dental pulp regeneration[J]. J Endod, 2021, 47(7): 1092-1100.
doi: 10.1016/j.joen.2021.04.012 pmid: 33887305 |
[23] |
Li ZH, Wu ML, Liu SY, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration[J]. Mol Ther, 2022, 30(10): 3193-3208.
doi: 10.1016/j.ymthe.2022.05.006 pmid: 35538661 |
[24] | Zheng JM, Kong YY, Hu XL, et al. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis[J]. Stem Cell Res Ther, 2020, 11(1): 517. |
[25] | Zhang SC, Yang Y, Jia SX, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue[J]. Theranostics, 2020, 10(13): 5914-5931. |
[26] |
Poornejad N, Schaumann LB, Buckmiller EM, et al. The impact of decellularization agents on renal tissue extracellular matrix[J]. J Biomater Appl, 2016, 31(4): 521-533.
pmid: 27312837 |
[27] |
Liang ZL, Li JD, Lin HK, et al. Understanding the multi-functionality and tissue-specificity of decellularized dental pulp matrix hydrogels for endodontic regeneration[J]. Acta Biomater, 2024, 181: 202-221.
doi: 10.1016/j.actbio.2024.04.040 pmid: 38692468 |
[28] | Melling GE, Colombo JS, Avery SJ, et al. Liposomal delivery of demineralized dentin matrix for dental tissue regeneration[J]. Tissue Eng Part A, 2018, 24(13/14): 1057-1065. |
[29] | Guo H, Li B, Wu ML, et al. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279: 121223. |
[30] | Ricard-Blum S. The collagen family[J]. Cold Spring Harb Perspect Biol, 2011, 3(1): a004978. |
[31] | Yang XC, Han GL, Pang X, et al. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo[J]. JBiomedMaterRes A, 2020, 108(12): 2519-2526. |
[32] | Liang C, Liang QQ, Xu X, et al. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: Therapeutic potential for endogenous pulp regeneration[J]. Int J Oral Sci, 2022, 14(1): 38. |
[33] |
Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254-271.
doi: 10.1016/j.biomaterials.2015.08.045 pmid: 26414409 |
[34] | Qian Y, Gong JX, Lu KJ, et al. DLP printed hDPSC-loaded GelMA microsphere regenerates dental pulp and repairs spinal cord[J]. Biomaterials, 2023, 299: 122137. |
[35] |
Zhang RT, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration[J]. Acta Biomater, 2020, 113: 305-316.
doi: S1742-7061(20)30397-4 pmid: 32663663 |
[36] | Zhang HT, Cheng JQ, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine[J]. Mar Drugs, 2021, 19(5): 264. |
[37] |
Liang X, Xie L, Zhang QY, et al. Gelatin methacryloyl-alginate core-shell microcapsules as efficient delivery platforms for prevascularized microtissues in endodontic regeneration[J]. Acta Biomater, 2022, 144: 242-257.
doi: 10.1016/j.actbio.2022.03.045 pmid: 35364321 |
[38] | Chen H, Fu HC, Wu X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cells[J]. Sci Adv, 2020, 6(15): eaay1514. |
[39] | Chrepa V, Austah O, Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (restylane) as injectable scaffold for dental pulp regeneration: An in vitro evaluation[J]. J Endod, 2017, 43(2): 257-262. |
[40] |
Silva CR, Babo PS, Gulino M, et al. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration[J]. Acta Biomater, 2018, 77: 155-171.
doi: S1742-7061(18)30429-X pmid: 30031163 |
[41] |
Ducret M, Montembault A, Josse J, et al. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration[J]. Dent Mater, 2019, 35(4): 523-533.
doi: S0109-5641(18)31091-1 pmid: 30712823 |
[42] |
Pothupitiya JU, Zheng C, Saltzman WM. Synthetic biodegradable polyesters for implantable controlled-release devices[J]. Expert Opin Drug Deliv, 2022, 19(10): 1351-1364.
doi: 10.1080/17425247.2022.2131768 pmid: 36197839 |
[43] |
Terranova L, Louvrier A, Hébraud A, et al. Highly structured 3D electrospun conical scaffold: A tool for dental pulp regeneration[J]. ACS Biomater Sci Eng, 2021, 7(12): 5775-5787.
doi: 10.1021/acsbiomaterials.1c00900 pmid: 34846849 |
[44] |
Soares DG, Zhang ZP, Mohamed F, et al. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment[J]. Acta Biomater, 2018, 68: 190-203.
doi: S1742-7061(17)30803-6 pmid: 29294374 |
[45] |
Chen G, Chen JL, Yang B, et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52: 56-70.
doi: 10.1016/j.biomaterials.2015.02.011 pmid: 25818413 |
[46] | Galler KM, Brandl FP, Kirchhof S, et al. Suitability of different natural and synthetic biomaterials for dental pulp tissue engineering[J]. Tissue Eng Part A, 2018, 24(3/4): 234-244. |
[47] |
Demarco FF, Casagrande L, Zhang ZC, et al. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells[J]. J Endod, 2010, 36(11): 1805-1811.
doi: 10.1016/j.joen.2010.08.031 pmid: 20951292 |
[48] |
Itoh Y, Sasaki JI, Hashimoto M, et al. Pulp regeneration by 3-dimensional dental pulp stem cell constructs[J]. J Dent Res, 2018, 97(10): 1137-1143.
doi: 10.1177/0022034518772260 pmid: 29702010 |
[49] | Jiménez-Aristazábal RF, Carmona JU, Prades M. Changes on the structural architecture and growth factor release, and degradation in equine platelet-rich fibrin clots cultured over time[J]. J Equine Vet Sci, 2019, 82: 102789. |
[1] | 买布拜木·买买提依明, 玛衣努尔·艾赛提, 帕吾孜叶·帕尔哈提, 日孜瓦古力·阿木提. 富血小板纤维蛋白用于牙髓坏死的年轻恒牙患儿血管再生情况的随访分析[J]. 口腔医学, 2025, 45(3): 175-179. |
[2] | 谢妮娜, 魏路明, 袁长永, 刘浩, 刘雨苗, 刘宗响, 朱绍跃. 浓缩生长因子和血凝块作为支架在牙髓再生术中的疗效比较研究[J]. 口腔医学, 2024, 44(9): 678-684. |
[3] | 赵彩桃, 谢小美, 尹文, 陈蕊, 范桢, 郝春波. 牙龈间充质干细胞治疗口腔疾病研究进展[J]. 口腔医学, 2024, 44(7): 556-560. |
[4] | 黄蔼岚, 郭培培, 陆晓庆, 吴锦涛, 李泽汉, 徐秀清, 王娟, 周莉丽. 牙髓干细胞治疗糖尿病的研究进展[J]. 口腔医学, 2024, 44(6): 452-457. |
[5] | 潘乐, 段沁颜, 程俊翔, 洪锋, 胡亚军. 微环境下lncRNA介导miRNA调控牙周膜干细胞成骨分化的研究进展[J]. 口腔医学, 2024, 44(3): 232-236. |
[6] | 王涵, 胡建, 李林. 增减材混合制造无牙颌种植支架的精确性研究[J]. 口腔医学, 2024, 44(12): 917-922. |
[7] | 丁珂欣, 杨金鑫, 牟杰, 孙哲, 崔雅雯, 刘宗响. 黄酮类NO供体纳米颗粒通过调控巨噬细胞极化促进PDLSCs成骨分化的体外研究[J]. 口腔医学, 2024, 44(11): 806-814. |
[8] | 王希锐, 朱慧勇. 放射性颌骨坏死治疗策略研究进展[J]. 口腔医学, 2024, 44(11): 864-870. |
[9] | 陈子荣, 涂画, 陈乐怡, 徐稳安. 由外泌体介导的牙髓再生相关信号通路研究进展[J]. 口腔医学, 2024, 44(10): 775-779. |
[10] | 冯泽华, 邱爽, 徐萱雯, 郑凯, 徐艳. 介孔生物活性玻璃/聚己内酯短纤维骨组织工程支架体外抑炎功能研究[J]. 口腔医学, 2023, 43(7): 592-599. |
[11] | 赵炜,刘金明,杨磊婷,沈铭,张静露. 低氧预处理人羊膜间充质干细胞来源外泌体在改善血管衰老中的作用研究[J]. 口腔医学, 2023, 43(6): 494-499. |
[12] | 伍玉,杨磊婷,江飞,周芷萱,沈铭. 铜离子对牙髓组织再生能力的影响及其机制初探[J]. 口腔医学, 2023, 43(5): 407-414. |
[13] | 葛潇,于淼,武伟,毕秀婷,吴小燕,于晨,李倜. 钽涂层对hPDLSCs增殖及成骨分化的影响[J]. 口腔医学, 2023, 43(5): 415-420. |
[14] | 王一玉, 黄佳萍, 丁佩惠, 董研. 联合生物材料的牙源性间充质干细胞进行牙周组织再生的研究进展[J]. 口腔医学, 2023, 43(3): 261-266. |
[15] | 姚敏慧, 吴锦涛, 周愉, 褚凤清, 蒋葭葭, 陈玥, 周莉丽, 李泽汉. 牙髓再生相关细胞因子研究进展[J]. 口腔医学, 2023, 43(3): 282-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||