口腔医学 ›› 2025, Vol. 45 ›› Issue (6): 475-480.doi: 10.13591/j.cnki.kqyx.2025.06.015
• 综述 • 上一篇
收稿日期:
2024-04-18
出版日期:
2025-06-28
发布日期:
2025-07-08
通讯作者:
李丹雪 E-mail: 314525624@qq.com
Received:
2024-04-18
Online:
2025-06-28
Published:
2025-07-08
摘要:
随着种植技术的发展,种植义齿已成为修复牙列缺失和缺损的重要方法。作为种植义齿的关键部分,种植体的表面特性对种植成功率有着极大影响。为提高其生物学性能,对种植体进行表面改性成为口腔种植领域的研究热点。由于其高孔隙率和载药量、可调节的结构和孔道尺寸以及良好的生物相容性等特性,金属-有机骨架材料已成为极具潜力的种植体表面涂层材料,受到越来越多的关注。本文对近年来金属-有机骨架材料在种植体表面涂层中的研究进行了综述,为其在口腔种植领域的进一步应用提供参考。
中图分类号:
倪好, 李丹雪. 金属-有机骨架在种植体表面改性中的研究进展[J]. 口腔医学, 2025, 45(6): 475-480.
NI Hao, LI Danxue. Research progress of metal-organic frameworks in implant surface modification[J]. Stomatology, 2025, 45(6): 475-480.
[1] | 袁泉. 老龄患者的口腔种植治疗[J]. 华西口腔医学杂志, 2020, 38(6): 616-621. |
[2] | 贺小龙, 程志刚. 氧化锆种植体的表面处理与生物活性研究进展[J]. 临床口腔医学杂志, 2023, 9(7): 440-443. |
[3] |
王丽娜, 王佐林. 钛种植体表面生物活性涂层的应用进展[J]. 口腔颌面外科杂志, 2021, 31(4): 241-244.
doi: 10.3969/j.issn.1005-4979.2021.04.08 |
[4] | Hoskins BF, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989, 111(15): 5962-5964. |
[5] | Yaghi OM, Li GM, Li HL. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378: 703-706. |
[6] | Yaghi OM, Li HL. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. J Am Chem Soc, 1995, 117(41): 10401-10402. |
[7] |
Ge M, Wang YZ, Carraro F, et al. High-throughput electron diffraction reveals a hidden novel metal-organic framework for electrocatalysis[J]. Angew Chem Int Ed, 2021, 60(20): 11391-11397.
doi: 10.1002/anie.202016882 pmid: 33682282 |
[8] | Abdelhamid HN, Mathew AP. Cellulose-metal organic frameworks(CelloMOFs)hybrid materials and their multifaceted Applications: A review[J]. Coord Chem Rev, 2022, 451: 214263. |
[9] | Abdelhamid HN, Georgouvelas D, Edlund U, et al. CelloZIFPaper: Cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing[J]. Chem Eng J, 2022, 446: 136614. |
[10] |
Huang K, Liu WB, Wei WY, et al. Photothermal hydrogel encapsulating intelligently bacteria-capturing bio-MOF for infectious wound healing[J]. ACS Nano, 2022, 16(11): 19491-19508.
doi: 10.1021/acsnano.2c09593 pmid: 36321923 |
[11] | Guo LN, Chen Y, Wang T, et al. Rational design of metal-organic frameworks to deliver methotrexate for targeted rheumatoid arthritis therapy[J]. J Control Release, 2021, 330: 119-131. |
[12] | Chen JW, Zhang BY, Qi L, et al. Facile fabrication of hierarchical MOF-metal nanoparticle tandem catalysts for the synthesis of bioactive molecules[J]. ACS Appl Mater Interfaces, 2020, 12(20): 23002-23009. |
[13] |
Su YC, Cockerill I, Wang YD, et al. Zinc-based biomaterials for regeneration and therapy[J]. Trends Biotechnol, 2019, 37(4): 428-441.
doi: S0167-7799(18)30305-6 pmid: 30470548 |
[14] |
Wang S, Xu ZQ, Wang TT, et al. Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene[J]. Nat Commun, 2018, 9(1): 1737.
doi: 10.1038/s41467-018-03827-3 pmid: 29712901 |
[15] |
Zhou J, Yu GC, Huang FH. Supramolecular chemotherapy based on host-guest molecular recognition: A novel strategy in the battle against cancer with a bright future[J]. Chem Soc Rev, 2017, 46(22): 7021-7053.
doi: 10.1039/c6cs00898d pmid: 28980674 |
[16] | Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc Natl Acad Sci U S A, 2006, 103(27): 10186-10191. |
[17] | Wang WW, Pan XT, Yang HL, et al. Bioactive metal-organic frameworks with specific metal-nitrogen(M-N)active sites for efficient sonodynamic tumor therapy[J]. ACS Nano, 2021, 15(12): 20003-20012. |
[18] | Wang Y, Yan JH, Wen NC, et al. Metal-organic frameworks for stimuli-responsive drug delivery[J]. Biomaterials, 2020, 230: 119619. |
[19] |
Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J Am Chem Soc, 2008, 130(42): 13850-13851.
doi: 10.1021/ja8057953 pmid: 18817383 |
[20] | Shearer GC, Vitillo JG, Bordiga S, et al. Functionalizing the defects: Postsynthetic ligand exchange in the metal organic framework UiO-66[J]. Chem Mater, 2016, 28(20): 7190-7193. |
[21] | Bhadra BN, Lee JK, Cho CW, et al. Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon[J]. Chem Eng J, 2018, 343: 225-234. |
[22] | Wu JX, Jiang SK, Xie WJ, et al. Surface modification of the Ti surface with nanoscale bio-MOF-1 for improving biocompatibility and osteointegration in vitro and in vivo[J]. J Mater Chem B, 2022, 10(41): 8535-8548. |
[23] | 于婉琦, 周延民, 赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 5(4): 488-496. |
[24] |
Ma Z, Ren L, Liu R, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy[J]. J Mater Sci Technol, 2015, 31(7): 723-732.
doi: 10.1016/j.jmst.2015.04.002 |
[25] | Li Y, Yang W, Li XK, et al. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating[J]. ACS Appl Mater Interfaces, 2015, 7(10): 5715-5724. |
[26] | Qin H, Cao HL, Zhao YC, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014, 35(33): 9114-9125. |
[27] | Liu MY, Wang RL, Liu JJ, et al. Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing[J]. Biomater Adv, 2022, 133: 112609. |
[28] |
Shen XK, Zhang YY, Ma PP, et al. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration[J]. Biomaterials, 2019, 212: 1-16.
doi: S0142-9612(19)30272-8 pmid: 31100479 |
[29] |
Li J, Tan L, Liu XM, et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-Glycine-aspartic acid-cysteine nanorods[J]. ACS Nano, 2017, 11(11): 11250-11263.
doi: 10.1021/acsnano.7b05620 pmid: 29049874 |
[30] |
Lin JX, Tong X, Shi ZM, et al. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications[J]. Acta Biomater, 2020, 106: 410-427.
doi: S1742-7061(20)30096-9 pmid: 32068137 |
[31] |
Troyano J, Carné-Sánchez A, Avci C, et al. Colloidal metal-organic framework particles: The pioneering case of ZIF-8[J]. Chem Soc Rev, 2019, 48(23): 5534-5546.
doi: 10.1039/c9cs00472f pmid: 31664283 |
[32] | Zhang X, Chen JY, Pei X, et al. Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8[J]. ACS Appl Mater Interfaces, 2017, 9(30): 25171-25183. |
[33] | 张善纯, 程祥玉, 宋蓉, 等. 钛表面ZIF-L涂层的构建及细胞毒性检测[J]. 哈尔滨医科大学学报, 2024, 58(1): 100-104. |
[34] | Liu W, Yan ZJ, Ma XL, et al. Mg-MOF-74/MgF2 composite coating for improving the properties of magnesium alloy implants: Hydrophilicity and corrosion resistance[J]. Materials(Basel), 2018, 11(3): 396. |
[35] |
Joseph N, Lawson HD, Overholt KJ, et al. Synthesis and characterization of CaSr-Metal Organic Frameworks for biodegradable orthopedic applications[J]. Sci Rep, 2019, 9(1): 13024.
doi: 10.1038/s41598-019-49536-9 pmid: 31506530 |
[36] | Zhu Z, Jiang SK, Liu YH, et al. Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes[J]. Nano Res, 2020, 13(2): 511-526. |
[37] | Zhu Y, Zhi Q, Zhang CN, et al. Debridement of contaminated implants using air-polishing coupled with pH-responsive maximin H5-embedded metal-organic frameworks[J]. Front Bioeng Biotechnol, 2023, 11: 1124107. |
[38] | Zhang YY, Shen XK, Ma PP, et al. Composite coatings of Mg-MOF74 and Sr-substituted hydroxyapatite on titanium substrates for local antibacterial, anti-osteosarcoma and pro-osteogenesis applications[J]. Mater Lett, 2019, 241: 18-22. |
[39] | Zhang XZ, Zu HY, Zhao DW, et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant[J]. Acta Biomater, 2017, 63: 369-382. |
[40] | Shyngys M, Ren J, Liang XQ, et al. Metal-organic framework(MOF)-based biomaterials for tissue engineering and regenerative medicine[J]. Front Bioeng Biotechnol, 2021, 9: 603608. |
[41] | Si YH, Liu HY, Yu HY, et al. MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis[J]. Colloids Surf B Biointerfaces, 2022, 219: 112840. |
[42] | Shakya S, He YP, Ren XH, et al. Ultrafine silver nanoparticles embedded in cyclodextrin metal-organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application[J]. Small, 2019, 15(27): e1901065. |
[43] |
He SY, Wu L, Li X, et al. Metal-organic frameworks for advanced drug delivery[J]. Acta Pharm Sin B, 2021, 11(8): 2362-2395.
doi: 10.1016/j.apsb.2021.03.019 pmid: 34522591 |
[44] | Sarkar C, Chowdhuri AR, Garai S, et al. Three-dimensional cellulose-hydroxyapatite nanocomposite enriched with dexamethasone loaded metal-organic framework: A local drug delivery system for bone tissue engineering[J]. Cellulose, 2019, 26(12): 7253-7269. |
[45] | Ran JB, Zeng H, Cai J, et al. Rational design of a stable, effective, and sustained dexamethasone delivery platform on a titanium implant: An innovative application of metal organic frameworks in bone implants[J]. Chem Eng J, 2018, 333: 20-33. |
[46] | Tao BL, Zhao WK, Lin CC, et al. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration[J]. Chem Eng J, 2020, 390: 124621. |
[47] | Si YH, Liu HY, Li MS, et al. An efficient metal-organic framework-based drug delivery platform for synergistic antibacterial activity and osteogenesis[J]. J Colloid Interface Sci, 2023, 640: 521-539. |
[48] | Deng Y, Shi JC, Chan YK, et al. Heterostructured metal-organic frameworks/polydopamine coating endows polyetheretherketone implants with multimodal osteogenicity and photoswitchable disinfection[J]. Adv Healthc Mater, 2022, 11(14): e2200641. |
[49] | Xiao TH, Fan L, Liu RT, et al. Fabrication of dexamethasone-loaded dual-metal-organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for promoting bone regeneration[J]. ACS Appl Mater Interfaces, 2021, 13(43): 50836-50850. |
[50] |
Yu YQ, Jin GD, Xue Y, et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants[J]. Acta Biomater, 2017, 49: 590-603.
doi: S1742-7061(16)30663-8 pmid: 27915020 |
[51] | Yu MF, You DQ, Zhuang JJ, et al. Controlled release of naringin in metal-organic framework-loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity[J]. ACS Appl Mater Interfaces, 2017, 9(23): 19698-19705. |
[52] | Sava Gallis DF, Butler KS, Agola JO, et al. Antibacterial countermeasures via metal-organic framework-supported sustained therapeutic release[J]. ACS Appl Mater Interfaces, 2019, 11(8): 7782-7791. |
[53] | Yang XY, Chai HH, Guo LL, et al. In situ preparation of porous metal-organic frameworks ZIF-8@Ag on poly-ether-ether-ketone with synergistic antibacterial activity[J]. Colloids Surf B Biointerfaces, 2021, 205: 111920. |
[54] |
Telgerd MD, Sadeghinia M, Birhanu G, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on metal-organic framework based on copper, zinc, and imidazole coated poly-l-lactic acid nanofiber scaffolds[J]. J Biomed Mater Res A, 2019, 107(8): 1841-1848.
doi: 10.1002/jbm.a.36707 pmid: 31033136 |
[55] | Raffa ML, Nguyen VH, Hernigou P, et al. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio[J]. J Orthop Res, 2021, 39(6): 1174-1183. |
[56] | Beltrán AM, Begines B, Alcudia A, et al. Biofunctional and tribomechanical behavior of porous titanium substrates coated with a bioactive glass bilayer(45S5-1393)[J]. ACS Appl Mater Interfaces, 2020, 12(27): 30170-30180. |
[57] | Wang W, Xiong YZ, Zhao RL, et al. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation[J]. J Nanobiotechnology, 2022, 20(1): 68. |
[58] |
Ozkan A, Çakır DA, Tezel H, et al. Dental implants and implant coatings: A focus on their toxicity and safety[J]. J Environ Pathol Toxicol Oncol, 2023, 42(2): 31-48.
doi: 10.1615/JEnvironPatholToxicolOncol.2022043467 pmid: 36749088 |
[59] | Aiquel LL, Pitta J, Antonoglou GN, et al. Does the timing of implant placement and loading influence biological outcomes of implant-supported multiple-unit fixed dental prosthesis: A systematic review with meta-analyses[J]. Clin Oral Implants Res, 2021, 32(Suppl 21): 5-27. |
[1] | 徐晟瀛, 孙徐麟, 黄佳萍, 石卓瑾, 丁佩惠. 龈下喷砂治疗牙周炎与种植体周围炎的研究进展[J]. 口腔医学, 2025, 45(5): 380-385. |
[2] | 荣圣安, 屈依丽, 杨醒眉. 失败种植体拔除后再植的风险因素及治疗策略[J]. 口腔医学, 2025, 45(4): 301-305. |
[3] | 刘珂, 轩诗杰, 刘鑫. 颧牙槽嵴支抗稳定性影响因素的三维有限元分析[J]. 口腔医学, 2025, 45(2): 100-104. |
[4] | 段文君, 王柏翔. 倾斜种植体修复骨量不足上颌后牙区牙列缺损的研究进展[J]. 口腔医学, 2025, 45(2): 139-145. |
[5] | 彭含宇, 李潇. 种植体表面纳米形貌影响成骨细胞黏附的研究进展[J]. 口腔医学, 2025, 45(2): 156-160. |
[6] | 江济民, 王胤霖, 杨杭, 何福明. 种植体与基台连接界面设计的研究进展[J]. 口腔医学, 2024, 44(9): 692-698. |
[7] | 张哲维, 汪姣宏, 吴维, 董硕, 李国情, 汤春波. 种植体周围炎中铁死亡的生物信息学分析与实验验证[J]. 口腔医学, 2024, 44(7): 527-535. |
[8] | 王依玮, 束蓉, 谢玉峰, 钱洁蕾, 林智恺. 光动力疗法辅助治疗种植体周炎的短期非随机对照临床研究[J]. 口腔医学, 2024, 44(6): 414-420. |
[9] | 戴悦, 蔡霞, 胡济安. 种植体周病风险评估的研究进展[J]. 口腔医学, 2024, 44(2): 144-147. |
[10] | 王伟娜, 雒静, 赵金花, 李泽彬, 李潇. 三维打印口腔修复种植体的研究进展[J]. 口腔医学, 2024, 44(2): 156-160. |
[11] | 宋昊伦, 郑园娜. 电化学处理去除种植体周围炎生物膜研究进展[J]. 口腔医学, 2024, 44(12): 941-945. |
[12] | 郑悦, 张森林. 计算机辅助种植技术在颧种植中的应用研究进展[J]. 口腔医学, 2024, 44(12): 957-960. |
[13] | 陈思, 陈星霖, 马文杰, 杨萌, 童昕. 10例种植体折裂病例的临床分析[J]. 口腔医学, 2024, 44(1): 50-55. |
[14] | 唐金鑫, 汤春波, 宋鑫, 芮娜, 薛昌敖. 牙周炎患者发生种植体周围炎风险预测模型的构建[J]. 口腔医学, 2023, 43(8): 706-710. |
[15] | 叶宸汐, 吴楠, 徐旭. 三维打印种植体抗菌性能研究现状[J]. 口腔医学, 2023, 43(8): 763-768. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||