[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
|
[2] |
D'Souza S, Addepalli V. Preventive measures in oral cancer: An overview[J]. Biomed Pharmacother, 2018, 107: 72-80.
doi: S0753-3322(18)33634-5
pmid: 30081204
|
[3] |
Chattopadhyay I, Verma M, Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer[J]. Technol Cancer Res Treat, 2019, 18: 1533033819867354.
|
[4] |
Struckmeier AK, Buchbender M, Lutz R, et al. Improved recurrence rates and progression-free survival in primarily surgically treated oral squamous cell carcinoma-results from a German tertiary medical center[J]. Clin Oral Investig, 2024, 28(5): 262.
|
[5] |
Lu TX, Rothenberg ME. microRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
doi: S0091-6749(17)31593-2
pmid: 29074454
|
[6] |
Boehm M, Slack FJ. microRNA control of lifespan and metabolism[J]. Cell Cycle, 2006, 5(8): 837-840.
doi: 10.4161/cc.5.8.2688
pmid: 16627994
|
[7] |
Carleton M, Cleary MA, Linsley PS. microRNAs and cell cycle regulation[J]. Cell Cycle, 2007, 6(17): 2127-2132.
doi: 10.4161/cc.6.17.4641
pmid: 17786041
|
[8] |
Adereh A, Amini P, Fateh A, et al. Loc646329 sponges miR-21 to reduce RAS/MAP kinase signaling pathway in oral squamous cell carcinoma (OSCC)[J/OL]. Naunyn Schmiedeberg’s Arch Pharmacol, 2024[2025-03-03].https://doi.org/10.1007/s00210-024-03671-x.
|
[9] |
Huang F, Xin C, Lei KX, et al. Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma[J]. Cell Oncol (Dordr), 2020, 43(5): 763-777.
doi: 10.1007/s13402-020-00521-9
pmid: 32495292
|
[10] |
Shi BX, Ma C, Liu GL, et al. miR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells[J]. Cell Mol Biol Lett, 2019, 24: 1.
doi: 10.1186/s11658-018-0127-8
pmid: 30873211
|
[11] |
Zheng Y, Song A, Zhou Y, et al. Identification of extracellular vesicles-transported miRNAs in Erlotinib-resistant head and neck squamous cell carcinoma[J]. J Cell Commun Signal, 2020, 14(4): 389-402.
|
[12] |
de Rooij LA, Mastebroek DJ, Ten Voorde N, et al. The microRNA lifecycle in health and cancer[J]. Cancers (Basel), 2022, 14(23): 5748.
|
[13] |
Rishabh K, Khadilkar S, Kumar A, et al. microRNAs as modulators of oral tumorigenesis-a focused review[J]. Int J Mol Sci, 2021, 22(5): 2561.
|
[14] |
Y D, Ramani P, Yuwanati M, et al. microRNA profiling in circulating exosomes in oral squamous cell carcinoma: A systematic review[J]. Cureus, 2023, 15(8): e43235.
|
[15] |
Yoon AJ, Wang S, Kutler DI, et al. microRNA-based risk scoring system to identify early-stage oral squamous cell carcinoma patients at high-risk for cancer-specific mortality[J]. Head Neck, 2020, 42(8): 1699-1712.
|
[16] |
Li YI, Wang TY, Ding HR, et al. Exosomal microRNA let-7c-5p enhances cell malignant characteristics by inhibiting TAGLN in oral cancer[J]. Oncol Res, 2024, 32(10): 1623-1635.
doi: 10.32604/or.2024.048191
pmid: 39308508
|
[17] |
Chen YM, Wang YC, Zhang WB. LINC00342 regulates the PI3K-AKT signaling pathway via the miR-149-5p/FGF11 axis and affects the progression of oral cancer[J]. Discov Oncol, 2024, 15(1): 606.
|
[18] |
Pan ZY, Yang GZ, He H, et al. Identification of cerebrospinal fluid microRNAs associated with leptomeningeal metastasis from lung adenocarcinoma[J]. Front Oncol, 2020, 10: 387.
doi: 10.3389/fonc.2020.00387
pmid: 32328453
|
[19] |
Karere GM, Glenn JP, Li G, et al. Potential miRNA biomarkers and therapeutic targets for early atherosclerotic lesions[J]. Sci Rep, 2023, 13: 3467.
doi: 10.1038/s41598-023-29074-1
pmid: 36859458
|
[20] |
Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs[J]. Semin Cancer Biol, 2022, 86: 136-145.
doi: 10.1016/j.semcancer.2022.09.004
pmid: 36183999
|
[21] |
Li X, Chen L, Peng X, et al. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor[J]. Front Oncol, 2022, 12: 911410.
|
[22] |
Zhang Y, Donaher JL, Das S, et al. Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis[J]. Nat Cell Biol, 2022, 24: 554-564.
doi: 10.1038/s41556-022-00877-0
pmid: 35411083
|
[23] |
Ebrahimi N, Manavi MS, Faghihkhorasani F, et al. Harnessing function of EMT in cancer drug resistance: A metastasis regulator determines chemotherapy response[J]. Cancer Metastasis Rev, 2024, 43(1): 457-479.
|
[24] |
Li YX, Li B, Yang K, et al. PER3 suppresses tumor metastasis of oral squamous cell carcinoma by promoting HIF-1α degradation[J]. Transl Oncol, 2025, 52: 102258.
|
[25] |
Dillon M, Lopez A, Lin E, et al. Progress on ras/MAPK signaling research and targeting in blood and solid cancers[J]. Cancers (Basel), 2021, 13(20): 5059.
|
[26] |
Bugaj LJ, Sabnis AJ, Mitchell A, et al. Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway[J]. Science, 2018, 361(6405): eaao3048.
|