口腔医学 ›› 2025, Vol. 45 ›› Issue (4): 241-247.doi: 10.13591/j.cnki.kqyx.2025.04.001
• 基础与临床研究 • 下一篇
闫行之, 蔡新誉, 陈思麦, 方韦文, 雷凡, 曹丹, 张阳()
收稿日期:
2024-09-20
出版日期:
2025-04-28
发布日期:
2025-04-25
通讯作者:
张 阳, Tel:(025)69593060,E-mail:基金资助:
YAN Xingzhi, CAI Xinyu, CHEN Simai, FANG Weiwen, LEI Fan, CAO Dan, ZHANG Yang()
Received:
2024-09-20
Online:
2025-04-28
Published:
2025-04-25
摘要:
目的 探究肽基精氨酸脱亚氨酶4(peptidyl arginine deiminase 4,PAD4)对颌骨间充质干细胞(mesenchymal stem cells isolated from oral bones,OMSC)分化及颅颌面发育的影响。方法 通过免疫荧光技术检测PAD4在胚胎发育期小鼠颌骨中的表达,构建PAD4基因敲除(PAD4-KO)小鼠模型,通过micro CT比较PAD4-KO小鼠与野生型小鼠颌骨发育差异;通过CCK-8、Transwell等实验测定PAD4-KO与野生型(wild type,WT)小鼠OMSC增殖及迁移能力的差异,通过ALP实验测定了两组小鼠OMSC的成骨能力,并通过免疫荧光、PCR测定成骨相关基因的表达差异。结果 PAD4在小鼠E13.5期胚胎颌骨组织中表达,细胞水平上PAD4在OMSC细胞核及线粒体中表达。观察见PAD4-KO小鼠下颌骨发育迟缓,micro CT示PAD4-KO小鼠颅骨及颌骨发育迟缓、矿化不良。细胞实验示PAD4-KO小鼠OMSC细胞增殖及迁移能力下降,ALP实验结果示OMSC成骨矿化能力下降,免疫荧光和PCR结果示成骨相关基因表达水平降低。此外研究发现PAD4可能通过调节Runx2的转录影响OMSC的矿化。结论 PAD4在胚胎发育期颌骨中表达,其可能通过调节OMSC的分化功能,从而影响胚胎发育,导致颅颌面发育异常。
中图分类号:
闫行之, 蔡新誉, 陈思麦, 方韦文, 雷凡, 曹丹, 张阳. PAD4在颌骨生长发育调控中的作用初探[J]. 口腔医学, 2025, 45(4): 241-247.
YAN Xingzhi, CAI Xinyu, CHEN Simai, FANG Weiwen, LEI Fan, CAO Dan, ZHANG Yang. Preliminary study on the role of peptidyl arginine deiminase 4 in the regulation of maxillofacial development[J]. Stomatology, 2025, 45(4): 241-247.
[1] |
Selleri L, Rijli FM. Shaping faces:Genetic and epigenetic control of craniofacial morphogenesis[J]. Nat Rev Genet, 2023, 24(9): 610-626.
doi: 10.1038/s41576-023-00594-w pmid: 37095271 |
[2] |
Aghaloo TL, Chaichanasakul T, Bezouglaia O, et al. Osteogenic potential of mandibular vs. long-bone marrow stromal cells[J]. J Dent Res, 2010, 89(11): 1293-1298.
doi: 10.1177/0022034510378427 pmid: 20811069 |
[3] |
Leucht P, Kim JB, Amasha R, et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration[J]. Development, 2008, 135(17): 2845-2854.
doi: 10.1242/dev.023788 pmid: 18653558 |
[4] | Li C, Wang F, Zhang R, et al. Comparison of proliferation and osteogenic differentiation potential of rat mandibular and femoral bone marrow mesenchymal stem cells in vitro[J]. Stem Cells Dev, 2020, 29(11): 728-736. |
[5] |
Deng P, Chang I, Wang J, et al. Loss of KDM4B impairs osteogenic differentiation of OMSCs and promotes oral bone aging[J]. Int J Oral Sci, 2022, 14(1): 24.
doi: 10.1038/s41368-022-00175-3 pmid: 35525910 |
[6] | Yu K, Proost P. Insights into peptidylarginine deiminase expression and citrullination pathways[J]. Trends Cell Biol, 2022, 32(9): 746-761. |
[7] | Zhu D, Lu Y, Wang Y, et al. PAD4 and its inhibitors in cancer progression and prognosis[J]. Pharmaceutics, 2022, 14(11): 2414. |
[8] | Liu X, Arfman T, Wichapong K, et al. PAD 4 takes charge during neutrophil activation: Impact of PAD4 mediated NET formation on immune-mediated disease[J]. J Thromb Haemost, 2021, 19(7):1607-1617. |
[9] | Yang C, Dong ZZ, Zhang J, et al. Peptidylarginine deiminases 4 as a promising target in drug discovery[J]. Eur J Med Chem, 2021,226:113840. |
[10] | Christophorou MA, Castelo-Branco G, Halley-Stott RP, et al. Citrullination regulates pluripotency and histone H1 binding to chromatin[J]. Nature, 2014, 507(7490): 104-108. |
[11] | Zhang Y, Cooke M, Panjwani S, et al. Histone h1 depletion impairs embryonic stem cell differentiation[J]. PLoS Genet, 2012, 8(5): e1002691. |
[12] | Egusa H, Sonoyama W, Nishimura M, et al. Stem cells in dentistry—part Ⅰ: Stem cell sources[J]. J Prosthodont Res, 2012, 56(3): 151-165. |
[13] |
Lewis HD, Liddle J, Coote JE, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation[J]. Nat Chem Biol, 2015, 11(3): 189-191.
doi: 10.1038/nchembio.1735 pmid: 25622091 |
[14] |
Sørensen OE, Borregaard N. Neutrophil extracellular traps-the dark side of neutrophils[J]. J Clin Invest, 2016, 126(5):1612-1620.
doi: 10.1172/JCI84538 pmid: 27135878 |
[15] |
Clancy KW, Russell AM, Subramanian V, et al. Citrullination/Methylation crosstalk on histone H3 regulates ER-target gene transcription[J]. ACS Chem Biol, 2017, 12(6): 1691-1702.
doi: 10.1021/acschembio.7b00241 pmid: 28485572 |
[16] |
Wang S, Wang Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis[J]. Biochim Biophys Acta, 2013, 1829(10): 1126-1135.
doi: 10.1016/j.bbagrm.2013.07.003 pmid: 23860259 |
[17] |
Alghamdi M, Al Ghamdi KA, Khan RH, et al. An interplay of structure and intrinsic disorder in the functionality of peptidylarginine deiminases, a family of key autoimmunity-related enzymes[J]. Cell Mol Life Sci, 2019, 76(23): 4635-4662.
doi: 10.1007/s00018-019-03237-8 pmid: 31342121 |
[18] |
Chen H, Luo M, Wang X, et al. Inhibition of PAD4 enhances radiosensitivity and inhibits aggressive phenotypes of nasopharyngeal carcinoma cells[J]. Cell Mol Biol Lett, 2021, 26(1): 9.
doi: 10.1186/s11658-021-00251-2 pmid: 33726680 |
[19] | Wang S, Song Y, Wang Z, et al. Neutrophil-derived PAD4 induces citrullination of CKMT1 exacerbates mucosal inflammation in inflammatory bowel disease[J]. Cell Mol Immunol, 2024, 21(6): 620-633. |
[20] | Tilvawala R, Thompson P. R. Peptidyl arginine deiminases: Detection and functional analysis of protein citrullination[J]. Curr Opin Struct Biol, 2019, 59: 205-215. |
[21] |
Yuzhalin AE, Gordon-Weeks AN, Tognoli ML, et al. Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix[J]. Nat Commun, 2018, 9(1):4783.
doi: 10.1038/s41467-018-07306-7 pmid: 30429478 |
[22] |
Wiese M, Bannister AJ, Basu S, et al. Citrullination of HP1γ chromodomain affects association with chromatin[J]. Epigenetics Chromatin, 2019, 12(1): 21.
doi: 10.1186/s13072-019-0265-x pmid: 30940194 |
[23] |
Xiao S, Lu J, Sridhar B, et al. SMARCAD1 Contributes to the regulation of naive pluripotency by interacting with histone citrullination[J]. Cell Rep, 2017, 18(13): 3117-3128.
doi: S2211-1247(17)30288-7 pmid: 28355564 |
[1] | 房斌, 李媛, 周薇娜, 于林凤, 周猛, 马俊青. 无托槽隐形矫治初期温度感觉与压力痛觉的研究[J]. 口腔医学, 2025, 45(4): 259-263. |
[2] | 黎金鹏, 江银华. 儿童腺样体肥大与错𬌗畸形相关性的研究进展[J]. 口腔医学, 2025, 45(4): 311-316. |
[3] | 苏咏宽, 潘永初, 张晶超, 卞海峰, 方玉心, 侯伟, 韩霖霏. 上颌前方牵引对替牙期唇腭裂患者软硬组织的影响[J]. 口腔医学, 2025, 45(3): 168-174. |
[4] | 赵玺, 杨莉. 隐形矫治下颌尖牙移动最佳附件位置的三维有限元分析[J]. 口腔医学, 2025, 45(3): 197-203. |
[5] | 刘珂, 轩诗杰, 刘鑫. 颧牙槽嵴支抗稳定性影响因素的三维有限元分析[J]. 口腔医学, 2025, 45(2): 100-104. |
[6] | 马惠, 王雯, 仇岩, 华泽权. 下颌支矢状骨劈开术后退下颌治疗骨性Ⅲ类错𬌗畸形对上气道和睡眠呼吸通气功能的影响[J]. 口腔医学, 2025, 45(2): 123-128. |
[7] | 包佳琦, 王中秀, 冯贻苗, 雷利红, 陈莉丽. 正畸治疗中牙周硬组织相关并发症的处理[J]. 口腔医学, 2025, 45(1): 37-44. |
[8] | 李根, 王华, 谷妍. 数字化三维打印前方牵引联合快速扩缩矫治替牙期骨性Ⅲ类的临床效果研究[J]. 口腔医学, 2025, 45(1): 51-57. |
[9] | 周悦, 唐振兴, 李宇. 拔除前磨牙正畸病例的磨牙支抗丧失及其影响因素[J]. 口腔医学, 2025, 45(1): 64-68. |
[10] | 程烨, 曾维浩, 李煌, 雷浪. 下颌第二磨牙远中移动牙根限制相关因素的锥形束计算机断层扫描研究[J]. 口腔医学, 2024, 44(12): 887-891. |
[11] | 王若飞, 邵丽鑫, 刘晓彤, 张苗苗. GsMTx4对大鼠牙齿移动过程中痛觉的抑制作用[J]. 口腔医学, 2024, 44(11): 815-819. |
[12] | 李宗峰, 孙莲, 潘永初. 不同矢状骨面型成人下颌磨牙远中舌侧间隙的CBCT研究[J]. 口腔医学, 2024, 44(11): 820-823. |
[13] | 娄姝, 采晓燕, 张驰, 张元, 韩旻轩, 管兆兰. 比较无托槽隐形和固定矫治对青少年患者生活质量的影响[J]. 口腔医学, 2024, 44(11): 841-846. |
[14] | 熊再道, 张燕萍, 顾永春, 周志浩. 无托槽隐形矫治器掩饰治疗成人骨性Ⅲ类错𬌗的牙根吸收研究[J]. 口腔医学, 2024, 44(11): 847-580. |
[15] | 胡丹艳, 陈慧芬, 吴峻青, 李琥, 严斌, 韶青华. 无托槽隐形矫治中牙釉质脱矿情况的临床调查[J]. 口腔医学, 2024, 44(10): 742-746. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||