[1] |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791.
|
[2] |
Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer[J]. Gastroenterology, 2020, 159(1): 335-349.e15.
doi: S0016-5085(20)30452-2
pmid: 32247694
|
[3] |
Peery AF, Crockett SD, Murphy CC, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2018[J]. Gastroenterology, 2019, 156(1): 254-272. e11
doi: S0016-5085(18)35147-3
pmid: 30315778
|
[4] |
Nascimento GG, Alves-Costa S, Romandini M. Burden of severe periodontitis and edentulism in 2021, with projections up to 2050: The Global Burden of Disease 2021 study[J]. J Periodontal Res, 2024, 59(5): 823-867.
|
[5] |
Zhang Y, Sun CY, Song EJ, et al. Is periodontitis a risk indicator for gastrointestinal cancers? A meta-analysis of cohort studies[J]. J Clin Periodontol, 2020, 47(2): 134-147.
doi: 10.1111/jcpe.13217
pmid: 31697412
|
[6] |
Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: A meta-analysis[J]. Ann Oncol, 2017, 28(5): 985-995.
doi: 10.1093/annonc/mdx019
pmid: 28453689
|
[7] |
Li WQ, Xu JY, Zhang RY, et al. Is periodontal disease a risk indicator for colorectal cancer? A systematic review and meta-analysis[J]. J Clin Periodontol, 2021, 48(3): 336-347.
doi: 10.1111/jcpe.13402
pmid: 33179280
|
[8] |
Chen SH, Chen JF, Hung YT, et al. Exploring the relationship between periodontitis, anti-periodontitis therapy, and extra-oral cancer risk: Findings from a nationwide population-based study[J]. Biomedicines, 2023, 11(7): 1949.
|
[9] |
Yoshihara T, Kioi M, Baba J, et al. A prospective interventional trial on the effect of periodontal treatment on Fusobacterium nucleatum abundance in patients with colorectal tumours[J]. Sci Rep, 2021, 11(1): 23719.
doi: 10.1038/s41598-021-03083-4
pmid: 34887459
|
[10] |
Flemer B, Warren RD, Barrett MP, et al. The oral microbiota in colorectal cancer is distinctive and predictive[J]. Gut, 2018, 67(8): 1454-1463.
doi: 10.1136/gutjnl-2017-314814
pmid: 28988196
|
[11] |
Fan XZ, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study[J]. Gut, 2018, 67(1): 120-127.
doi: 10.1136/gutjnl-2016-312580
pmid: 27742762
|
[12] |
徐依萍, 黄嘉玲, 刘忠斌, 等. 具核梭杆菌与口腔鳞状细胞癌关系的研究进展[J]. 口腔医学, 2023, 43(6): 546-551.
|
[13] |
Rashidi A, Ebadi M, Weisdorf DJ, et al. No evidence for colonization of oral bacteria in the distal gut in healthy adults[J]. Proc Natl Acad Sci USA, 2021, 118(42): e2114152118.
|
[14] |
Kunath BJ, De Rudder C, Laczny CC, et al. The oral-gut microbiome axis in health and disease[J]. Nat Rev Microbiol, 2024, 22(12): 791-805.
|
[15] |
Zhou YF, Qin Y, Ma JJ, et al. Heat-killed Prevotella intermedia promotes the progression of oral squamous cell carcinoma by inhibiting the expression of tumor suppressors and affecting the tumor microenvironment[J]. Exp Hematol Oncol, 2024, 13(1): 33.
|
[16] |
Chen MF, Lu MS, Hsieh CC, et al. Porphyromonas gingivalis promotes tumor progression in esophageal squamous cell carcinoma[J]. Cell Oncol (Dordr), 2021, 44(2): 373-384.
|
[17] |
Liang MX, Liu YW, Zhang ZY, et al. Fusobacterium nucleatum induces MDSCs enrichment via activation the NLRP3 inflammosome in ESCC cells, leading to cisplatin resistance[J]. Ann Med, 2022, 54(1): 989-1003.
|
[18] |
Hernández-Cabanyero C, Vonaesch P. Ectopic colonization by oral bacteria as an emerging theme in health and disease[J]. FEMS Microbiol Rev, 2024, 48(2): fuae012.
|
[19] |
Horliana ACRT, Chambrone L, Foz AM, et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: A systematic review[J]. PLoS One, 2014, 9(5): e98271.
|
[20] |
Xue Y, Xiao H, Guo SH, et al. Indoleamine 2, 3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages[J]. Cell Death Dis, 2018, 9(3): 355.
|
[21] |
Bostanghadiri N, Razavi S, Shariati A, et al. Exploring the interplay between Fusobacterium nucleatum with the expression of microRNA, and inflammatory mediators in colorectal cancer[J]. Front Microbiol, 2023, 14: 1302719.
|
[22] |
Tan Q, Ma X, Yang B, et al. Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils[J]. Gut Microbes, 2022, 14(1): 2073785.
|
[23] |
Li TJ, Hao YH, Tang YL, et al. Periodontal pathogens: A crucial link between periodontal diseases and oral cancer[J]. Front Microbiol, 2022, 13: 919633.
|
[24] |
Peng RT, Sun Y, Zhou XD, et al. Treponema denticola promotes OSCC development via the TGF-β signaling pathway[J]. J Dent Res, 2022, 101(6): 704-713.
|
[25] |
Chen SM, Hsu LJ, Lee HL, et al. Lactobacillus attenuate the progression of pancreatic cancer promoted by Porphyromonas gingivalis in K-rasG12D transgenic mice[J]. Cancers (Basel), 2020, 12(12): 3522.
|
[26] |
Udayasuryan B, Ahmad RN, Nguyen TTD, et al. Fusobacterium nucleatum induces proliferation and migration in pancreatic cancer cells through host autocrine and paracrine signaling[J]. Sci Signal, 2022, 15(756): eabn4948.
|
[27] |
Ha NH, Park DG, Woo BH, et al. Porphyromonas gingivalis increases the invasiveness of oral cancer cells by upregulating IL-8 and MMPs[J]. Cytokine, 2016, 86: 64-72.
doi: S1043-4666(16)30181-8
pmid: 27468958
|
[28] |
Casasanta MA, Yoo CC, Udayasuryan B, et al. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration[J]. Sci Signal, 2020, 13(641): eaba9157.
|
[29] |
Hayashi M, Ikenaga N, Nakata K, et al. Intratumor Fusobacterium nucleatum promotes the progression of pancreatic cancer via the CXCL1-CXCR2 axis[J]. Cancer Sci, 2023, 114(9): 3666-3678.
|
[30] |
Yáñez L, Soto C, Tapia H, et al. Co-culture of P. gingivalis and F. nucleatum synergistically elevates IL-6 expression via TLR4 signaling in oral keratinocytes[J]. Int J Mol Sci, 2024, 25(7): 3611.
|
[31] |
Brennan CA, Clay SL, Lavoie SL, et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression[J]. Gut Microbes, 2021, 13(1): 1987780.
doi: 10.1080/19490976.2021.1987780
pmid: 34781821
|
[32] |
Ternes D, Tsenkova M, Pozdeev VI, et al. The gut microbial metabolite formate exacerbates colorectal cancer progression[J]. Nat Metab, 2022, 4(4): 458-475.
doi: 10.1038/s42255-022-00558-0
pmid: 35437333
|
[33] |
Saito T, Nishikawa H, Wada H, et al. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers[J]. Nat Med, 2016, 22(6): 679-684.
|
[34] |
Liu SY, Zhou XD, Peng X, et al. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack[J]. J Immunol, 2020, 205(1): 282-289.
doi: 10.4049/jimmunol.1901138
pmid: 32471882
|
[35] |
Xu CC, Fan LN, Lin YF, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization[J]. Gut Microbes, 2021, 13(1): 1980347.
|
[36] |
Shin AE, Tesfagiorgis Y, Larsen F, et al. F4/80+Ly6Chigh macrophages lead to cell plasticity and cancer initiation in colitis[J]. Gastroenterology, 2023, 164(4): 593-609.e13.
|
[37] |
Yamane T, Kanamori Y, Sawayama H, et al. Iron accelerates Fusobacterium nucleatum-induced CCL8 expression in macrophages and is associated with colorectal cancer progression[J]. JCI Insight, 2022, 7(21): e156802.
|
[38] |
Wen L, Mu W, Lu H, et al. Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment[J]. J Dent Res, 2020, 99(6): 666-675.
doi: 10.1177/0022034520909312
pmid: 32298192
|
[39] |
Wang XP, Liu YW, Lu YN, et al. Clinical impact of Fn-induced high expression of KIR2DL1 in CD8 T lymphocytes in oesophageal squamous cell carcinoma[J]. Ann Med, 2022, 54(1): 51-62.
|
[40] |
Sakamoto Y, Mima K, Ishimoto T, et al. Relationship between Fusobacterium nucleatum and antitumor immunity in colorectal cancer liver metastasis[J]. Cancer Sci, 2021, 112(11): 4470-4477.
|
[41] |
Ren JL, Han X, Lohner H, et al. gingivalis infection upregulates PD-L1 expression on dendritic cells, suppresses CD8+ T-cell responses, and aggravates oral cancer[J]. Cancer Immunol Res, 2023, 11(3): 290-305.
|
[42] |
Jiang SS, Xie YL, Xiao XY, et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer[J]. Cell Host Microbe, 2023, 31(5): 781-797.e9.
|
[43] |
Gao YH, Bi DX, Xie RT, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 398.
|
[44] |
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355.
|
[45] |
Kim YJ, Kim BK, Park SJ, et al. Impact of Fusobacterium nucleatum in the gastrointestinal tract on natural killer cells[J]. World J Gastroenterol, 2021, 27(29): 4879-4889.
|