Stomatology ›› 2023, Vol. 43 ›› Issue (8): 763-768.doi: 10.13591/j.cnki.kqyx.2023.08.018
• Summary • Previous Articles
Revised:
2022-07-27
Online:
2023-08-28
Published:
2023-08-23
CLC Number:
YE Chenxi, WU Nan, XU Xu. Research status of antibacterial properties of 3D printing implants[J]. Stomatology, 2023, 43(8): 763-768.
[1] |
Pillai S, Upadhyay A, Khayambashi P, et al. Dental 3D-printing: Transferring art from the laboratories to the clinics[J]. Polymers, 2021, 13(1):157.
doi: 10.3390/polym13010157 |
[2] |
Henprasert P, Dawson DV, El-Kerdani T, et al. Comparison of the accuracy of implant position using surgical guides fabricated by additive and subtractive techniques[J]. J Prosthodont, 2020, 29(6):534-541.
doi: 10.1111/jopr.13161 pmid: 32147893 |
[3] |
Inoue K, Nakajima Y, Omori M, et al. Reconstruction of the alveolar bone using bone augmentation with selective laser melting titanium mesh sheet: A report of 2 cases[J]. Implant Dent, 2018, 27(5):602-607.
doi: 10.1097/ID.0000000000000822 pmid: 30216233 |
[4] |
Kim JE, Kwon DH, Kim JH, et al. A digital implant custom tray fabrication method using the design process for simulating the position of the impression copings and 3D printing technology[J]. J Prosthet Dent, 2019, 121(4):566-570.
doi: 10.1016/j.prosdent.2018.07.005 |
[5] | Matsko A, França R. Design, manufacturing and clinical outcomes for additively manufactured titanium dental implants: A systematic review[J]. Dent Rev, 2022, 2(1):100041. |
[6] | Chang JZC, Tsai PI, Kuo MYP, et al. Augmentation of DMLS biomimetic dental implants with weight-bearing strut to balance of biologic and mechanical demands: From bench to animal[J]. Materials(Basel), 2019, 12(1):164. |
[7] |
Xie K, Guo Y, Zhao S, et al. Partially melted Ti6Al4V particles increase bacterial adhesion and inhibit osteogenic activity on 3D-printed implants: An in vitro study[J]. Clin Orthop Relat Res, 2019, 477(12):2772-2782.
doi: 10.1097/CORR.0000000000000954 |
[8] |
Chen ZH, Wang ZD, Qiu W, et al. Overview of antibacterial strategies of dental implant materials for the prevention of peri-implantitis[J]. Bioconjug Chem, 2021, 32(4):627-638.
doi: 10.1021/acs.bioconjchem.1c00129 |
[9] |
Qin S, Xu KH, Nie BN, et al. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity[J]. J Biomed Mater Res A, 2018, 106(9):2531-2539.
doi: 10.1002/jbm.a.36413 pmid: 29603857 |
[10] |
Maher S, Mazinani A, Barati MR, et al. Engineered titanium implants for localized drug delivery: Recent advances and perspectives of Titania nanotubes arrays[J]. Expert Opin Drug Deliv, 2018, 15(10):1021-1037.
doi: 10.1080/17425247.2018.1517743 pmid: 30259776 |
[11] |
Momand P, Becktor JP, Naimi-Akbar A, et al. Effect of antibiotic prophylaxis in dental implant surgery: A multicenter placebo-controlled double-blinded randomized clinical trial[J]. Clin Implant Dent Relat Res, 2022, 24(1):116-124.
doi: 10.1111/cid.v24.1 |
[12] |
Wada M, Mameno T, Otsuki M, et al. Prevalence and risk indicators for peri-implant diseases: A literature review[J]. Jpn Dent Sci Rev, 2021, 57: 78-84.
doi: 10.1016/j.jdsr.2021.05.002 |
[13] |
Zheng TX, Li W, Gu YY, et al. Classification and research progress of implant surface antimicrobial techniques[J]. J Dent Sci, 2022, 17(1):1-7.
doi: 10.1016/j.jds.2021.08.019 |
[14] |
Sarker A, Tran N, Rifai A, et al. Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formation[J]. Materialia, 2019, 5: 100250.
doi: 10.1016/j.mtla.2019.100250 |
[15] |
Bernevig-Sava MA, Stamate C, Lohan NM, et al. Considerations on the surface roughness of SLM processed metal parts and the effects of subsequent sandblasting[J]. IOP Conf Ser: Mater Sci Eng, 2019, 572(1):012071.
doi: 10.1088/1757-899X/572/1/012071 |
[16] | Spitaels L, Ducobu F, Demarbaix A, et al. Influence of conventional machining on chemical finishing of Ti6Al4V electron beam melting parts[J]. Procedia Manuf, 2020, 47: 1036-1042. |
[17] |
Hu XC, Xu RG, Yu XL, et al. Enhanced antibacterial efficacy of selective laser melting titanium surface with nanophase calcium phosphate embedded to TiO2 nanotubes[J]. Biomed Mater, 2018, 13(4):045015.
doi: 10.1088/1748-605X/aac1a3 |
[18] | Szymczyk-Ziółkowska P, Hoppe V, Rusińska M, et al. The impact of EBM-manufactured Ti6Al4V ELI alloy surface modifications on cytotoxicity toward eukaryotic cells and microbial biofilm formation[J]. Materials(Basel), 2020, 13(12):2822. |
[19] |
李改明, 刘思雨, 战德松, 等. 三维打印医用钛合金的抗菌性能和体外生物相容性[J]. 材料研究学报, 2019, 33(2):117-123.
doi: 10.11901/1005.3093.2018.548 |
[20] |
Maharubin S, Hu YB, Sooriyaarachchi D, et al. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys[J]. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110059.
doi: 10.1016/j.msec.2019.110059 |
[21] |
Jahanmard F, Dijkmans FM, Majed A, et al. Toward antibacterial coatings for personalized implants[J]. ACS Biomater Sci Eng, 2020, 6(10):5486-5492.
doi: 10.1021/acsbiomaterials.0c00683 pmid: 33320546 |
[22] | 关彬彬. 利用相转变溶菌酶改性的直接金属激光烧结钛表面构建抗菌涂层的研究[D]. 天津: 天津医科大学, 2017. |
[23] |
Llopis-Grimalt MA, Arbós A, Gil-Mir M, et al. Multifunctional properties of quercitrin-coated porous Ti-6Al-4V implants for orthopaedic applications assessed in vitro[J]. J Clin Med, 2020, 9(3):855.
doi: 10.3390/jcm9030855 |
[24] |
Li YX, Chen DX, Sheng YY, et al. In situ preparation of antibacterial Ag particles on Ti6Al4V surfaces by spray deposition[J]. Surf Innov, 2021, 9(2/3):166-173.
doi: 10.1680/jsuin.20.00036 |
[25] |
Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020, 15: 2555-2562.
doi: 10.2147/IJN.S246764 |
[26] | Qiao SC, Wu DL, Li ZH, et al. The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment[J]. J Tissue Eng, 2020, 11: 2041731420965797. |
[27] |
Croes M, Bakhshandeh S, et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium[J]. Acta Biomater, 2018, 81: 315-327.
doi: S1742-7061(18)30580-4 pmid: 30268917 |
[28] |
Valentin E, Bottomley AL, Chilambi GS, et al. Heritable nanosilver resistance in priority pathogen: A unique genetic adaptation and comparison with ionic silver and antibiotics[J]. Nanoscale, 2020, 12(4):2384-2392.
doi: 10.1039/c9nr08424j pmid: 31930233 |
[29] |
Fazel M, Salimijazi HR, Shamanian M, et al. Osteogenic and antibacterial surfaces on additively manufactured porous Ti-6Al-4V implants: Combining silver nanoparticles with hydrothermally synthesized HA nanocrystals[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111745.
doi: 10.1016/j.msec.2020.111745 |
[30] |
Chen DX, Li YX, He HY, et al. Covalent incorporation of Ag nanoparticles into TiO2 nanotubes on Ti6Al4V by molecular grafting for enhancing antibacterial effect[J]. Surf Coat Technol, 2021, 426: 127773.
doi: 10.1016/j.surfcoat.2021.127773 |
[31] |
Tierolf MWAM, Valerio VPM, et al. Self-defending additively manufactured bone implants bearing silver and copper nanoparticles[J]. J Mater Chem B, 2020, 8(8):1589-1602.
doi: 10.1039/c9tb02434d pmid: 31848564 |
[32] | Gelderman FSA, Athanasiadis S, et al. Functionality-packed additively manufactured porous titanium implants[J]. Mater Today Bio, 2020, 7: 100060. |
[33] |
Putra NE, Tierolf MWAM, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria[J]. Acta Biomater, 2020, 107: 325-337.
doi: S1742-7061(20)30132-X pmid: 32145392 |
[34] |
Rodríguez-Contreras A, Torres D, Guillem-Marti J, et al. Development of novel dual-action coatings with osteoinductive and antibacterial properties for 3D-printed titanium implants[J]. Surf Coat Technol, 2020, 403: 126381.
doi: 10.1016/j.surfcoat.2020.126381 |
[35] | 刘婷洁, 商同发, 张笑, 等. 三维打印掺钇牙种植体的制备与应用研究[C]//. 2020年中华口腔医学会口腔材料专业委员会第十五次全国口腔材料学术年会论文汇编.[出版者不详], 2020:65-66. |
[36] |
Bhardwaj G, Webster TJ. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment[J]. Int J Nanomedicine, 2017, 12: 363-369.
doi: 10.2147/IJN |
[37] | 王昊阳, 孟维艳. 二氧化钛纳米管抗菌性能在口腔种植领域的研究进展[J]. 中华老年口腔医学杂志, 2021, 19(1):49-53. |
[38] |
Elliott DT, Wiggins RJ, Dua R. Bioinspired antibacterial surface for orthopedic and dental implants[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(7):973-981.
doi: 10.1002/jbm.v109.7 |
[39] | Modaresifar K, Kunkels LB, Ganjian M, et al. Deciphering the roles of interspace and controlled disorder in the bactericidal properties of nanopatterns against Staphylococcus aureus[J]. Nanomaterials(Basel), 2020, 10(2):347. |
[40] |
Fathi-Hafshejani P, Johnson H, Ahmadi Z, et al. Phase-selective and localized TiO2 coating on additive and wrought titanium by a direct laser surface modification approach[J]. ACS Omega, 2020, 5(27):16744-16751.
doi: 10.1021/acsomega.0c01671 pmid: 32685842 |
[41] |
Maher S, Wijenayaka AR, Lima-ZMarques L, et al. Advancing of additive-manufactured titanium implants with bioinspired micro- to nanotopographies[J]. ACS Biomater Sci Eng, 2021, 7(2):441-450.
doi: 10.1021/acsbiomaterials.0c01210 pmid: 33492936 |
[42] |
Maher S, Linklater D, Rastin H, et al. Advancing of 3D-printed titanium implants with combined antibacterial protection using ultrasharp nanostructured surface and gallium-releasing agents[J]. ACS Biomater Sci Eng, 2022, 8(1):314-327.
doi: 10.1021/acsbiomaterials.1c01030 |
[43] |
Zanocco M, Boschetto F, Zhu WL, et al. 3D-additive deposition of an antibacterial and osteogenic silicon nitride coating on orthopaedic titanium substrate[J]. J Mech Behav Biomed Mater, 2020, 103: 103557.
doi: 10.1016/j.jmbbm.2019.103557 |
[44] | Kumari S, Bargel H, Scheibel T. Recombinant spider silk-silica hybrid scaffolds with drug-releasing properties for tissue engineering applications[J]. Macromol Rapid Commun, 2020, 41(1):e1900426. |
[45] |
Gimeno M, Pinczowski P, Mendoza G, et al. Antibiotic-eluting orthopedic device to prevent early implant associated infections: Efficacy, biocompatibility and biodistribution studies in an ovine model[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(5):1976-1986.
doi: 10.1002/jbm.b.34009 |
[46] |
Costa RC, Nagay BE, Bertolini M, et al. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections[J]. Adv Colloid Interface Sci, 2021, 298: 102551.
doi: 10.1016/j.cis.2021.102551 |
[47] |
Zhou WH, Jia ZJ, Xiong P, et al. Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with efficient and sustained antibacterial properties[J]. Mater Sci Eng C Mater Biol Appl, 2018, 90: 693-705.
doi: 10.1016/j.msec.2018.04.069 |
[48] |
Ding M, Zhao W, Song LJ, et al. Stimuli-responsive nanocarriers for bacterial biofilm treatment[J]. Rare Metals, 2022, 41(2):482-498.
doi: 10.1007/s12598-021-01802-4 |
[49] |
Tao BL, Deng YM, Song LY, et al. BMP2-loaded titania nanotubes coating with pH-responsive multilayers for bacterial infections inhibition and osteogenic activity improvement[J]. Colloids Surf B Biointerfaces, 2019, 177: 242-252.
doi: 10.1016/j.colsurfb.2019.02.014 |
[50] |
Ding Y, Hao YS, Yuan Z, et al. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration[J]. Biomater Sci, 2020, 8(7):1840-1854.
doi: 10.1039/C9BM01924C |
[51] |
Huang Z, Zhou TC, Yuan Y, et al. Synthesis of carbon quantum dot-poly lactic-co-glycolic acid hybrid nanoparticles for chemo-photothermal therapy against bacterial biofilms[J]. J Colloid Interface Sci, 2020, 577: 66-74.
doi: 10.1016/j.jcis.2020.05.067 |
[52] | Schulze C, Weinmann M, Schweigel C, et al. Mechanical properties of a newly additive manufactured implant material based on Ti-42Nb[J]. Materials(Basel), 2018, 11(1):124. |
[53] | 苏可欣, 季平, 王涵, 等. 三维打印多孔钽种植体对骨整合影响的实验研究[J]. 华西口腔医学杂志, 2018, 36(3):291-295. |
[54] | Kim JC, Yeo ISL. Bone response to conventional titanium implants and new zirconia implants produced by additive manufacturing[J]. Materials(Basel), 2021, 14(16):4405. |
[55] |
Han XT, Yang D, Yang CC, et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications[J]. J Clin Med, 2019, 8(2):240.
doi: 10.3390/jcm8020240 |
[56] |
Deng LJ, Deng Y, Xie KN. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair[J]. Colloids Surf B Biointerfaces, 2017, 160: 483-492.
doi: 10.1016/j.colsurfb.2017.09.061 |
[57] | Hua L, Qian H, Lei T, et al. 3D-printed porous tantalum coated with antitubercular drugs achieving antibacterial properties and good biocompatibility[J]. Macromol Biosci, 2022, 22(1):e2100338. |
[58] |
Zhu YL, Liu K, Deng JJ, et al. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties[J]. Int J Nanomedicine, 2019, 14: 5977-5987.
doi: 10.2147/IJN |
[59] | Yavari SA, Croes M, Akhavan B, et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials[J]. Addit Manuf, 2020, 32: 100991. |
[60] |
Suchý T, Vištejnová L, Šupová M, et al. Vancomycin-loaded collagen/hydroxyapatite layers electrospun on 3D printed titanium implants prevent bone destruction associated with S. epidermidis infection and enhance osseointegration[J]. Biomedicines, 2021, 9(5):531.
doi: 10.3390/biomedicines9050531 |
[61] |
Gorgin Karaji Z, Jahanmard F, Mirzaei AH, et al. A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration[J]. Biomed Mater, 2020, 15(6):065016.
doi: 10.1088/1748-605X/aba40b |
[62] |
Polymeri A, van der Horst J, Buijs MJ, et al. Submucosal microbiome of peri-implant sites: A cross-sectional study[J]. J Clin Periodontol, 2021, 48(9):1228-1239.
doi: 10.1111/jcpe.13502 pmid: 34101220 |
[63] |
Pingueiro J, Piattelli A, Paiva J, et al. Additive manufacturing of titanium alloy could modify the pathogenic microbial profile: An in vitro study[J]. Braz Oral Res, 2019, 33(Suppl 1):e065.
doi: 10.1590/1807-3107bor-2019.vol33.0065 pmid: 31576949 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||