Stomatology ›› 2024, Vol. 44 ›› Issue (1): 69-74.doi: 10.13591/j.cnki.kqyx.2024.01.015
• Review • Previous Articles Next Articles
ZHENG Yuxin1,DING Yude2,CHEN Feng3,YANG Fan2()
Received:
2022-08-25
Online:
2024-01-28
Published:
2024-01-22
CLC Number:
ZHENG Yuxin, DING Yude, CHEN Feng, YANG Fan. Research progress of silk fibroin as barrier membrane material in oral tissue regeneration[J]. Stomatology, 2024, 44(1): 69-74.
[1] |
Melcher AH. On the repair potential of periodontal tissues[J]. J Periodontol, 1976, 47(5):256-260.
doi: 10.1902/jop.1976.47.5.256 pmid: 775048 |
[2] | Buser D, Dula K, Belser U, et al. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla[J]. Int J Periodontics Restorative Dent, 1993, 13(1):29-45. |
[3] |
Prajatelistia E, Sanandiya ND, Nurrochman A, et al. Biomimetic Janus chitin nanofiber membrane for potential guided bone regeneration application[J]. Carbohydr Polym, 2021, 251:117032.
doi: 10.1016/j.carbpol.2020.117032 |
[4] |
Cai Y, Guo J, Chen C, et al. Silk fibroin membrane used for guided bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(pt 1):148-154.
doi: 10.1016/j.msec.2016.08.070 |
[5] |
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3:17038.
doi: 10.1038/nrdp.2017.38 pmid: 28805207 |
[6] | 孟焕新. 牙周病学[M]. 4版. 北京: 人民卫生出版社, 2012:382. |
[7] |
Nuñez J, Vignoletti F, Caffesse RG, et al. Cellular therapy in periodontal regeneration[J]. Periodontol 2000, 2019, 79(1):107-116.
doi: 10.1111/prd.2019.79.issue-1 |
[8] |
Elani HW, Starr JR, da Silva JD, et al. Trends in dental implant use in the US, 1999-2016, and projections to 2026[J]. J Dent Res, 2018, 97(13):1424-1430.
doi: 10.1177/0022034518792567 pmid: 30075090 |
[9] | 樊明文. 口腔生物学[M]. 2版. 北京: 人民卫生出版社, 2004. |
[10] | Farmer M, Darby I. Ridge dimensional changes following single-tooth extraction in the aesthetic zone[J]. Clin Oral Implants Res, 2014, 25(2):272-277. |
[11] | Aprile P, Letourneur D, Simon-Yarza T. Membranes for guided bone regeneration:A road from bench to bedside[J]. Adv Healthc Mater, 2020, 9(19):e2000707. |
[12] |
Chiapasco M, Casentini P. Horizontal bone-augmentation procedures in implant dentistry:Prosthetically guided regeneration[J]. Periodontol 2000, 2018, 77(1):213-240.
doi: 10.1111/prd.12219 pmid: 29478251 |
[13] |
Kinaia BM, Kazerani S, Korkis S, et al. Effect of guided bone regeneration on immediately placed implants:Meta-analyses with at least 12 months follow-up after functional loading[J]. J Periodontol, 2021, 92(12):1749-1760.
doi: 10.1002/jper.v92.12 |
[14] |
Sheikh Z, Hamdan N, Ikeda Y, et al. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications:A review[J]. Biomater Res, 2017, 21:9.
doi: 10.1186/s40824-017-0095-5 |
[15] |
Xie Y, Li SH, Zhang TX, et al. Titanium mesh for bone augmentation in oral implantology:Current application and progress[J]. Int J Oral Sci, 2020, 12:37.
doi: 10.1038/s41368-020-00107-z pmid: 33380722 |
[16] |
Li SH, Zhao JY, Xie Y, et al. Hard tissue stability after guided bone regeneration:A comparison between digital titanium mesh and resorbable membrane[J]. Int J Oral Sci, 2021, 13(1):37.
doi: 10.1038/s41368-021-00143-3 |
[17] |
Park JY, Song YW, Ko KA, et al. Effect of collagen membrane fixation on ridge volume stability and new bone formation following guided bone regeneration[J]. J Clin Periodontol, 2022, 49(7):684-693.
doi: 10.1111/jcpe.v49.7 |
[18] |
Chu CY, Deng J, Sun XC, et al. Collagen membrane and immune response in guided bone regeneration:Recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017, 23(5):421-435.
doi: 10.1089/ten.teb.2016.0463 |
[19] |
Liu XZ, Chen WL, Shao B, et al. Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone[J]. Biomaterials, 2021, 276:120998.
doi: 10.1016/j.biomaterials.2021.120998 |
[20] |
Lin CC, Chiu JY. A novel γ-PGA composite gellan membrane containing glycerol for guided bone regeneration[J]. Mater Sci Eng C, 2021, 118:111404.
doi: 10.1016/j.msec.2020.111404 |
[21] |
Cheng G, Yin CC, Tu H, et al. Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration[J]. ACS Nano, 2019, 13(6):6372-6382.
doi: 10.1021/acsnano.8b06032 pmid: 31184474 |
[22] |
Sheikh Z, Qureshi J, Alshahrani AM, et al. Collagen based barrier membranes for periodontal guided bone regeneration applications[J]. Odontology, 2017, 105(1):1-12.
doi: 10.1007/s10266-016-0267-0 pmid: 27613193 |
[23] | 刘许正, 樊卜熙, 韶波. 牙种植中引导骨再生膜的研究进展[J]. 中国口腔种植学杂志, 2019, 24(1):44-49. |
[24] |
Bassir SH, Alhareky M, Wangsrimongkol B, et al. Systematic review and meta-analysis of hard tissue outcomes of alveolar ridge preservation[J]. Int J Oral Maxillofac Implants, 2018, 33(5):979-994.
doi: 10.11607/jomi.6399 pmid: 30231083 |
[25] |
Inoue S, Tanaka K, Arisaka F, et al. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio[J]. J Biol Chem, 2000, 275(51):40517-40528.
doi: 10.1074/jbc.M006897200 pmid: 10986287 |
[26] | Holland C, Numata K, Rnjak-Kovacina J, et al. The biomedical use of silk:Past, present, future[J]. Adv Healthc Mater, 2019, 8(1):e1800465. |
[27] |
Sun WZ, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. Int J Mol Sci, 2021, 22(3):1499.
doi: 10.3390/ijms22031499 |
[28] |
Ma DK, Wang YS, Dai WJ. Silk fibroin-based biomaterials for musculoskeletal tissue engineering[J]. Mater Sci Eng C, 2018, 89:456-469.
doi: 10.1016/j.msec.2018.04.062 |
[29] |
Farokhi M, Mottaghitalab F, Fatahi Y, et al. Overview of silk fibroin use in wound dressings[J]. Trends Biotechnol, 2018, 36(9):907-922.
doi: S0167-7799(18)30117-3 pmid: 29764691 |
[30] | Liu KY, Fan Z, Wang TJ, et al. All-aqueous-processed injectable in situ forming macroporous silk gel scaffolds for minimally invasive intracranial and osteological therapies[J]. Adv Healthc Mater, 2020, 9(16):e2000879. |
[31] |
Wang J, Chen YP, Zhou GS, et al. Polydopamine-coated Antheraea pernyi(A. pernyi)silk fibroin films promote cell adhesion and wound healing in skin tissue repair[J]. ACS Appl Mater Interfaces, 2019, 11(38):34736-34743.
doi: 10.1021/acsami.9b12643 |
[32] |
Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo[J]. Biomaterials, 2005, 26(2):147-155.
doi: 10.1016/j.biomaterials.2004.02.047 |
[33] |
Luo DD, Yao CX, Zhang R, et al. Silk fibroin/collagen blended membrane fabricated via a green papermaking method for potential guided bone regeneration application:in vitro and in vivo evaluation[J]. ACS Biomater Sci Eng, 2021, 7(12):5788-5797.
doi: 10.1021/acsbiomaterials.1c01060 |
[34] |
Long YL, Cheng X, Tang QM, et al. The antigenicity of silk-based biomaterials:Sources, influential factors and applications[J]. J Mater Chem B, 2021, 9(40):8365-8377.
doi: 10.1039/D1TB00752A |
[35] |
Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration[J]. J Biotechnol, 2005, 120(3):327-339.
doi: 10.1016/j.jbiotec.2005.06.033 |
[36] |
Ha YY, Park YW, Kweon H, et al. Comparison of the physical properties and in vivo bioactivities of silkworm-cocoon-derived silk membrane, collagen membrane, and polytetrafluoroethylene membrane for guided bone regeneration[J]. Macromol Res, 2014, 22(9):1018-1023.
doi: 10.1007/s13233-014-2138-2 |
[37] |
Smeets R, Knabe C, Kolk A, et al. Novel silk protein barrier membranes for guided bone regeneration[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(8):2603-2611.
doi: 10.1002/jbm.b.v105.8 |
[38] |
Kim JY, Yang BE, Ahn JH, et al. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects[J]. J Adv Prosthodont, 2014, 6(6):539-546.
doi: 10.4047/jap.2014.6.6.539 |
[39] |
Cao Y, Wang BC. Biodegradation of silk biomaterials[J]. Int J Mol Sci, 2009, 10(4):1514-1524.
doi: 10.3390/ijms10041514 pmid: 19468322 |
[40] |
Zhang LZ, Liu X, Li GC, et al. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering[J]. J Biomed Mater Res A, 2019, 107(1):104-113.
doi: 10.1002/jbm.a.36537 pmid: 30367546 |
[41] |
Wang YZ, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds[J]. Biomaterials, 2008, 29(24/25):3415-3428.
doi: 10.1016/j.biomaterials.2008.05.002 |
[42] | Hu YP, Zhang Q, You RC, et al. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds[J]. Adv Mater Sci Eng, 2012, 2012:185905. |
[43] |
Wang Y, Guo J, Zhou L, et al. Design, fabrication, and function of silk-based nanomaterials[J]. Adv Funct Mater, 2018, 28(52):1805305.
doi: 10.1002/adfm.v28.52 |
[44] |
Guo CC, Zhang J, Jordan JS, et al. Structural comparison of various silkworm silks:An insight into the structure-property relationship[J]. Biomacromolecules, 2018, 19(3):906-917.
doi: 10.1021/acs.biomac.7b01687 |
[45] | DeBari MK, Niu XD, Scott JV, et al. Therapeutic ultrasound triggered silk fibroin scaffold degradation[J]. Adv Healthc Mater, 2021, 10(10):e2100048. |
[46] |
Pritchard EM, Valentin T, Boison D, et al. Incorporation of proteinase inhibitors into silk-based delivery devices for enhanced control of degradation and drug release[J]. Biomaterials, 2011, 32(3):909-918.
doi: 10.1016/j.biomaterials.2010.09.055 pmid: 20950854 |
[47] |
Geão C, Costa-Pinto AR, Cunha-Reis C, et al. Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration[J]. J Mater Sci Mater Med, 2019, 30(2):27.
doi: 10.1007/s10856-019-6225-y |
[48] |
Ko YG, Lee M, Park WH, et al. Guiding bone regeneration using hydrophobized silk fibroin nanofiber membranes[J]. Macromol Res, 2016, 24(9):824-828.
doi: 10.1007/s13233-016-4109-2 |
[49] |
Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Prog Polym Sci, 2015, 46:86-110.
doi: 10.1016/j.progpolymsci.2015.02.001 |
[50] |
Serôdio R, Schickert SL, Costa-Pinto AR, et al. Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98:969-981.
doi: 10.1016/j.msec.2019.01.055 |
[51] |
Zheng XR, Ke X, Yu P, et al. A facile strategy to construct silk fibroin based GTR membranes with appropriate mechanical performance and enhanced osteogenic capacity[J]. J Mater Chem B, 2020, 8(45):10407-10415.
doi: 10.1039/d0tb01962c pmid: 33112359 |
[52] |
Wani SUD, Gautam SP, Qadrie ZL, et al. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review[J]. Int J Biol Macromol, 2020, 163:2145-2161.
doi: 10.1016/j.ijbiomac.2020.09.057 pmid: 32950527 |
[53] |
Wu JQ, Sahoo JK, Li YM, et al. Challenges in delivering therapeutic peptides and proteins:A silk-based solution[J]. J Control Release, 2022, 345:176-189.
doi: 10.1016/j.jconrel.2022.02.011 |
[54] |
Townsend KL, Pritchard E, Coburn JM, et al. Silk hydrogel-mediated delivery of bone morphogenetic protein 7 directly to subcutaneous white adipose tissue increases browning and energy expenditure[J]. Front Bioeng Biotechnol, 2022, 10:884601.
doi: 10.3389/fbioe.2022.884601 |
[55] |
Wu JN, Zheng A, Liu Y, et al. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide[J]. Int J Nanomedicine, 2019, 14:733-751.
doi: 10.2147/IJN |
[56] |
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor(VEGF)- key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2):455-467.
pmid: 30173249 |
[57] |
Farokhi M, Mottaghitalab F, Shokrgozar MA, et al. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor[J]. Mater Sci Eng C Mater Biol Appl, 2014, 35:401-410.
doi: 10.1016/j.msec.2013.11.023 |
[58] |
Zhang WJ, Wang XL, Wang SY, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165)and BMP-2 delivery for elevation of the maxillary sinus floor[J]. Biomaterials, 2011, 32(35):9415-9424.
doi: 10.1016/j.biomaterials.2011.08.047 |
[59] |
Song J, Klymov A, Shao J, et al. Electrospun nanofibrous silk fibroin membranes containing gelatin nanospheres for controlled delivery of biomolecules[J]. Adv Healthc Mater, 2017, 6:1700014.
doi: 10.1002/adhm.v6.14 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||