Stomatology ›› 2024, Vol. 44 ›› Issue (3): 214-221.doi: 10.13591/j.cnki.kqyx.2024.03.010
• Review • Previous Articles Next Articles
ZHANG Xiatong,WU Wenzhi,CHEN Zhuo()
Received:
2023-07-17
Online:
2024-03-28
Published:
2024-03-20
CLC Number:
ZHANG Xiatong, WU Wenzhi, CHEN Zhuo. Progress of single-cell RNA sequencing and spatial transcriptomics in stomatology[J]. Stomatology, 2024, 44(3): 214-221.
Tab.1
Principles and characteristics of single cell sequencing and spatial transcriptome technology"
原理与特点 | 单细胞测序 | 空间转录组 |
---|---|---|
原理 | 通过微流控,微液滴,微孔技术等将单个细胞遗传物质均匀扩增、标记建库后进行测序,主要流程为单细胞分离与标记、基因组扩增、高通量测序和数据分析等 | 基于一种特殊化设计的样本捕获芯片,每个捕获点含有数百万探针,当组织切片透化贴在芯片上时,这些探针捕获被释放的mRNA,进行后续的文库构建与测序 |
特点 | ①精确度高,达到单细胞水平,但失去细胞原始空间位置 ②组学信息丰富,可获得单细胞内多组学信息 | ①同时保留细胞的空间位置信息与转录信息,但难以达到单细胞精度 ②具有可视化,将基因表达谱映射到相应的组织形态中 |
[1] |
Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382.
doi: 10.1038/nmeth.1315 pmid: 19349980 |
[2] |
Song YL, Xu X, Wang W, et al. Single cell transcriptomics: Moving towards multi-omics[J]. Analyst, 2019, 144(10):3172-3189.
doi: 10.1039/c8an01852a pmid: 30849139 |
[3] |
Angermueller C, Clark SJ, Lee HJ, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity[J]. Nat Methods, 2016, 13(3):229-232.
doi: 10.1038/nmeth.3728 pmid: 26752769 |
[4] |
Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell[J]. Nat Biotechnol, 2019, 37(12):1452-1457.
doi: 10.1038/s41587-019-0290-0 pmid: 31611697 |
[5] |
Liu LQ, Liu CY, Quintero A, et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity[J]. Nat Commun, 2019, 10(1):470.
doi: 10.1038/s41467-018-08205-7 pmid: 30692544 |
[6] |
Peterson VM, Zhang KX, Kumar N, et al. Multiplexed quantification of proteins and transcripts in single cells[J]. Nat Biotechnol, 2017, 35(10):936-939.
doi: 10.1038/nbt.3973 pmid: 28854175 |
[7] |
Lian QY, Xin HY, Ma JZ, et al. Artificial-cell-type aware cell-type classification in CITE-seq[J]. Bioinformatics, 2020, 36(Suppl_1):i542-i550.
doi: 10.1093/bioinformatics/btaa467 |
[8] |
Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016, 353(6294):78-82.
doi: 10.1126/science.aaf2403 pmid: 27365449 |
[9] |
Moor AE, Itzkovitz S. Spatial transcriptomics: Paving the way for tissue-level systems biology[J]. Curr Opin Biotechnol, 2017, 46: 126-133.
doi: 10.1016/j.copbio.2017.02.004 |
[10] |
Marx V. Method of the year: Spatially resolved transcriptomics[J]. Nat Methods, 2021, 18(1):9-14.
doi: 10.1038/s41592-020-01033-y pmid: 33408395 |
[11] |
Chen J, Suo SB, Tam PP, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nat Protoc, 2017, 12(3):566-580.
doi: 10.1038/nprot.2017.003 pmid: 28207000 |
[12] | Chen KH, Boettiger AN, Moffitt JR, et al. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 2015, 348(6233):aaa6090. |
[13] |
Shah S, Takei Y, Zhou W, et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH[J]. Cell, 2018, 174(2):363-376. e16.
doi: S0092-8674(18)30647-0 pmid: 29887381 |
[14] |
Eng CHL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH[J]. Nature, 2019, 568(7751):235-239.
doi: 10.1038/s41586-019-1049-y |
[15] |
Elosua-Bayes M, Nieto P, Mereu E, et al. SPOTlight: Seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes[J]. Nucleic Acids Res, 2021, 49(9):e50.
doi: 10.1093/nar/gkab043 pmid: 33544846 |
[16] |
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7):1888-1902. e21.
doi: S0092-8674(19)30559-8 pmid: 31178118 |
[17] |
Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells[J]. Cell Transplant, 2011, 20(1):5-14.
doi: 10.3727/096368910X |
[18] |
Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering[J]. Periodontol 2000, 2015, 67(1):251-267.
doi: 10.1111/prd.2015.67.issue-1 |
[19] |
Pagella P, de Vargas Roditi L, Stadlinger B, et al. A single-cell atlas of human teeth[J]. iScience, 2021, 24(5):102405.
doi: 10.1016/j.isci.2021.102405 |
[20] |
Lee S, Chen DZ, Park M, et al. Single-cell RNA sequencing analysis of human dental pulp stem cell and human periodontal ligament stem cell[J]. J Endod, 2022, 48(2):240-248.
doi: 10.1016/j.joen.2021.11.005 |
[21] |
Lin WM, Li QW, Zhang DT, et al. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution[J]. Bone Res, 2021, 9(1):17.
doi: 10.1038/s41413-021-00141-5 pmid: 33723232 |
[22] | Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals[J]. J Oral MaxillofacPathol, 2019, 23(1):122-128. |
[23] |
Cross KL, Campbell JH, Balachandran M, et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics[J]. Nat Biotechnol, 2019, 37(11):1314-1321.
doi: 10.1038/s41587-019-0260-6 pmid: 31570900 |
[24] |
Campbell AG, Schwientek P, Vishnivetskaya T, et al. Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota[J]. Environ Microbiol, 2014, 16(9):2635-2643.
doi: 10.1111/1462-2920.12461 pmid: 24738594 |
[25] | Beall CJ, Campbell AG, Griffen AL, et al. Genomics of the uncultivated, periodontitis-associated bacterium Tannerella sp. BU045(oral taxon 808)[J]. mSystems, 2018, 3(3):e00018-e00018. |
[26] | Cross KL, Chirania P, Xiong WL, et al. Insights into the evolution of host association through the isolation and characterization of a novel human periodontal pathobiont, Desulfobulbusoralis[J]. mBio, 2018, 9(2):e02061-e02017. |
[27] |
Kuchina A, Brettner LM, Paleologu L, et al. Microbial single-cell RNA sequencing by split-pool barcoding[J]. Science, 2021, 371(6531):eaba5257.
doi: 10.1126/science.aba5257 |
[28] |
Ma PJ, Amemiya HM, He LL, et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states[J]. Cell, 2023, 186(4):877-891. e14.
doi: 10.1016/j.cell.2023.01.002 pmid: 36708705 |
[29] |
Dar D, Dar N, Cai L, et al. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution[J]. Science, 2021, 373(6556):eabi4882.
doi: 10.1126/science.abi4882 |
[30] | Yu TS, Klein OD. Molecular and cellular mechanisms of tooth development, homeostasis and repair[J]. Development, 2020, 147(2):dev184754. |
[31] |
Shi YQ, Yu YJ, Zhou YQ, et al. A single-cell interactome of human tooth germ from growing third molar elucidates signaling networks regulating dental development[J]. Cell Biosci, 2021, 11(1):178.
doi: 10.1186/s13578-021-00691-5 pmid: 34600587 |
[32] |
Matsubara T, Iga T, Sugiura Y, et al. Coupling of angiogenesis and odontogenesis orchestrates tooth mineralization in mice[J]. J Exp Med, 2022, 219(4):e20211789.
doi: 10.1084/jem.20211789 |
[33] |
Chiba Y, Yoshizaki K, Tian T, et al. Integration of single-cell RNA- and CAGE-seq reveals tooth-enriched genes[J]. J Dent Res, 2021, 101(5):542-550.
doi: 10.1177/00220345211049785 |
[34] |
Jing JJ, Feng JF, Yuan Y, et al. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis[J]. Nat Commun, 2022, 13(1):4803.
doi: 10.1038/s41467-022-32490-y pmid: 35974052 |
[35] |
Takada K, Chiba T, Miyazaki T, et al. Single cell RNA sequenc-ing reveals critical functions of Mkx in periodontal ligament homeostasis[J]. Front Cell Dev Biol, 2022, 10: 795441.
doi: 10.3389/fcell.2022.795441 |
[36] |
Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue[J]. Nat Biotechnol, 2020, 38(5):586-599.
doi: 10.1038/s41587-020-0472-9 pmid: 32393914 |
[37] |
Lee HS, Joo JY, Sohn DH, et al. Single-cell RNA sequencing reveals rebalancing of immunological response in patients with periodontitis after non-surgical periodontal therapy[J]. J Transl Med, 2022, 20(1):504.
doi: 10.1186/s12967-022-03702-2 pmid: 36329504 |
[38] |
Qian SJ, Huang QR, Chen RY, et al. Single-cell RNA sequencing identifies new inflammation-promoting cell subsets in Asian patients with chronic periodontitis[J]. Front Immunol, 2021, 12: 711337.
doi: 10.3389/fimmu.2021.711337 |
[39] |
Chen Y, Wang H, Yang QD, et al. Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis[J]. Theranostics, 2022, 12(3):1074-1096.
doi: 10.7150/thno.65694 pmid: 35154475 |
[40] |
Caetano AJ, D’Agostino EM, Sharpe P, et al. Expression of periodontitis susceptibility genes in human gingiva using single-cell RNA sequencing[J]. J Periodontal Res, 2022, 57(6):1210-1218.
doi: 10.1111/jre.v57.6 |
[41] | Agrafioti P, Morin-Baxter J, Tanagala KKK, et al. Decoding the role of macrophages in periodontitis and type 2 diabetes using single-cell RNA-sequencing[J]. FASEB J, 2022, 36(2):e22136. |
[42] |
Lundmark A, Gerasimcik N, Båge T, et al. Gene expression profiling of periodontitis-affected gingival tissue by spatial transcrip-tomics[J]. Sci Rep, 2018, 8(1):9370.
doi: 10.1038/s41598-018-27627-3 pmid: 29921943 |
[43] |
Lei Y, Yan W, Lin ZY, et al. Comprehensive analysis of partial epithelial mesenchymal transition-related genes in hepatocellular carcinoma[J]. J Cell Mol Med, 2021, 25(1):448-462.
doi: 10.1111/jcmm.16099 pmid: 33215860 |
[44] |
Huynh NCN, Huang TT, Nguyen CTK, et al. Comprehensive integrated single-cell whole transcriptome analysis revealed the p-EMT tumor cells-CAFs communication in oral squamous cell carcinoma[J]. Int J Mol Sci, 2022, 23(12):6470.
doi: 10.3390/ijms23126470 |
[45] |
Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer[J]. Cell, 2017, 171(7):1611-1624. e24.
doi: S0092-8674(17)31270-9 pmid: 29198524 |
[46] | Chen JT, Yang JF, Li H, et al. Single-cell transcriptomics reveal the intratumoral landscape of infiltrated T-cell subpopulations in oral squamous cell carcinoma[J]. MolOncol, 2021, 15(4):866-886. |
[47] | Hsieh YP, Wu YH, Cheng SM, et al. Single-cell RNA sequencing analysis for oncogenic mechanisms underlying oral squamous cell carcinoma carcinogenesis with Candida albicans infection[J]. Int J MolSci, 2022, 23(9):4833. |
[48] | Schmitd Ligia B, Cindy P, Bellile Emily L, et al. Spatial and transcriptomic analysis of perineural invasion in oral cancer[J]. Clin Cancer Res, 2022: clincanres. 4543. 2021. |
[49] |
Zhao RW, Han WH, Tang KL, et al. Function of normal oral mucosa revealed by single-cell RNA sequencing[J]. J Cell Biochem, 2022, 123(9):1481-1494.
doi: 10.1002/jcb.v123.9 |
[50] |
Williams DW, Greenwell-Wild T, Brenchley L, et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity[J]. Cell, 2021, 184(15):4090-4104. e15.
doi: 10.1016/j.cell.2021.05.013 pmid: 34129837 |
[51] |
Wang Q, Lin W, Zhou X, et al. Single-cell transcriptomic atlas of gingival mucosa in type 2 diabetes[J]. J Dent Res, 2022, 101(13):1654-1664.
doi: 10.1177/00220345221092752 |
[52] |
Li QH, Wang F, Shi YJ, et al. Single-cell immune profiling reveals immune responses in oral lichen planus[J]. Front Immunol, 2023, 14: 1182732.
doi: 10.3389/fimmu.2023.1182732 |
[53] | Caetano AJ, Redhead Y, Karim F, et al. Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10[J]. eLife, 2023, 12: e81525. |
[54] | Saviano A, Henderson NC, Baumert TF. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology[J]. J Hepatol, 2020, 73(5):1219-1230. |
[55] |
Qi JJ, Sun HX, Zhang Y, et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer[J]. Nat Commun, 2022, 13(1):1742.
doi: 10.1038/s41467-022-29366-6 |
[56] |
Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution[J]. Cell, 2021, 184(3):810-826. e23.
doi: 10.1016/j.cell.2020.12.016 pmid: 33406409 |
[57] |
Goodyer WR, Beyersdorf BM, Paik DT, et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution[J]. Circ Res, 2019, 125(4):379-397.
doi: 10.1161/CIRCRESAHA.118.314578 pmid: 31284824 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||