Stomatology ›› 2024, Vol. 44 ›› Issue (9): 641-647.doi: 10.13591/j.cnki.kqyx.2024.09.001
• Review and Commentary • Next Articles
Received:
2024-03-14
Online:
2024-09-28
Published:
2024-09-10
CLC Number:
LI Jiajie, LIN Yunfeng. Potential application of framework nucleic acids in stomatology[J]. Stomatology, 2024, 44(9): 641-647.
[1] |
Dong YM, Sun FJ, Ping Z, et al. DNA storage: Research landscape and future prospects[J]. Natl Sci Rev, 2020, 7(6): 1092-1107.
doi: 10.1093/nsr/nwaa007 pmid: 34692128 |
[2] |
Doricchi A, Platnich CM, Gimpel A, et al. Emerging approaches to DNA data storage: Challenges and prospects[J]. ACS Nano, 2022, 16(11): 17552-17571.
doi: 10.1021/acsnano.2c06748 pmid: 36256971 |
[3] |
Perrault SD, Shih WM. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability[J]. ACS Nano, 2014, 8(5): 5132-5140.
doi: 10.1021/nn5011914 pmid: 24694301 |
[4] | Goodman RP, Berry RM, Turberfield AJ. The single-step synthesis of a DNA tetrahedron[J]. Chem Commun, 2004(12): 1372-1373. |
[5] |
Liang L, Li J, Li Q, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells[J]. Angew Chem Int Ed, 2014, 53(30): 7745-7750.
doi: 10.1002/anie.201403236 pmid: 24827912 |
[6] |
Zhang T, Tian TR, Zhou RH, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment[J]. Nat Protoc, 2020, 15(8): 2728-2757.
doi: 10.1038/s41596-020-0355-z pmid: 32669637 |
[7] | Wiraja C, Zhu Y, Lio DCS, et al. Framework nucleic acids as programmable carrier for transdermal drug delivery[J]. Nat Commun, 2019, 10(1): 1147. |
[8] | Zhang T, Ma HS, Zhang XL, et al. Functionalized DNA nanomaterials targeting toll-like receptor 4 prevent bisphosphonate-related osteonecrosis of the jaw via regulating mitochondrial homeostasis in macrophages[J]. Adv Funct Mater, 2023, 33(15): 2213401. |
[9] | Lin YF, Li Q, Wang LH, et al. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: An expert consensus recommendation[J]. Int J Oral Sci, 2022, 14(1): 51. |
[10] | Surana S, Bhatia D, Krishnan Y. A method to study in vivo stability of DNA nanostructures[J]. Methods, 2013, 64(1): 94-100. |
[11] |
Vindigni G, Raniolo S, Ottaviani A, et al. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells[J]. ACS Nano, 2016, 10(6): 5971-5979.
doi: 10.1021/acsnano.6b01402 pmid: 27214742 |
[12] |
Li JJ, Yan R, Shi SR, et al. Recent progress and application of the tetrahedral framework nucleic acid materials on drug delivery[J]. Expert Opin Drug Deliv, 2023, 20(11): 1511-1530.
doi: 10.1080/17425247.2023.2276285 pmid: 37898874 |
[13] | Chen X, Tian FL, Li M, et al. Size-independent transmembrane transporting of single tetrahedral DNA nanostructures[J]. Glob Chall, 2020, 4(3): 1900075. |
[14] |
Zhou M, Gao S, Zhang XL, et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions[J]. Bioact Mater, 2021, 6(6): 1676-1688.
doi: 10.1016/j.bioactmat.2020.11.018 pmid: 33313447 |
[15] | Ma WJ, Shao XR, Zhao D, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation[J]. ACS Appl Mater Interfaces, 2018, 10(9): 7892-7900. |
[16] | Shao XR, Lin SY, Peng Q, et al. Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation[J]. Small, 2017, 13(12). |
[17] | Lin SY, Zhang Q, Zhang T, et al. Tetrahedral DNA nanomaterial regulates the biological behaviors of adipose-derived stem cells via DNA methylation on Dlg3[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32017-32025. |
[18] | Shi SR, Peng Q, Shao XR, et al. Self-assembled tetrahedral DNA nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19353-19363. |
[19] | Yao YX, Wen YT, Li YJ, et al. Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway[J]. Nanoscale, 2021, 13(37): 15598-15610. |
[20] | Liu NX, Zhang XL, Li N, et al. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo[J]. Small, 2019, 15(31): e1901907. |
[21] | Zhao D, Liu MT, Li JJ, et al. Angiogenic aptamer-modified tetrahedral framework nucleic acid promotes angiogenesis in vitro and in vivo[J]. ACS Appl Mater Interfaces, 2021, 13(25): 29439-29449. |
[22] | Ma WJ, Zhan YX, Zhang YX, et al. Enhanced neural regeneration with a concomitant treatment of framework nucleic acid and stem cells in spinal cord injury[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2095-2106. |
[23] | Zhou M, Liu NX, Shi SR, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the Notch signaling pathway[J]. Nanomed-Nanotechnol Biol Med, 2018, 14(4): 1227-1236. |
[24] | Shao XR, Lin SY, Peng Q, et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway[J]. Nanomed-Nanotechnol Biol Med, 2017, 13(5): 1809-1819. |
[25] | Qin X, Li N, Zhang M, et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway[J]. Nanoscale, 2019, 11(43): 20667-20675. |
[26] | Zhang M, Zhu JY, Qin X, et al. Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury[J]. ACS Appl Mater Interfaces, 2019, 11(34): 30631-30639. |
[27] |
Shi SR, Chen Y, Tian TR, et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis[J]. Bone Res, 2020, 8: 6.
doi: 10.1038/s41413-019-0077-4 pmid: 32047705 |
[28] | Shi SR, Tian TR, Li YJ, et al. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy[J]. ACS Appl Mater Interfaces, 2020, 12(51): 56782-56791. |
[29] | Zhu JY, Zhang M, Gao Y, et al. Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway[J]. Signal Transduct Target Ther, 2020, 5(1): 120. |
[30] | Jiang YY, Li SH, Zhang TX, et al. Tetrahedral framework nucleic acids inhibit skin fibrosis via the pyroptosis pathway[J]. ACS Appl Mater Interfaces, 2022, 14(13): 15069-15079. |
[31] | Hayflick L. Biological aging is no longer an unsolved problem[J]. Ann N Y Acad Sci, 2007, 1100: 1-13. |
[32] | Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6(12): 2853-2868. |
[33] | Mao CC, Pan WY, Shao XR, et al. The clearance effect of tetrahedral DNA nanostructures on senescent human dermal fibroblasts[J]. ACS Appl Mater Interfaces, 2019, 11(2): 1942-1950. |
[34] | Ye YQ, Yu JC, Wen D, et al. Polymeric microneedles for transdermal protein delivery[J]. Adv Drug Deliv Rev, 2018, 127: 106-118. |
[35] | Xie Y, He JJ, Li SH, et al. A transdermal drug delivery system based on nucleic acid nanomaterials for skin photodamage treatment[J]. Adv Funct Materials, 2023, 33(46): 2303580. |
[36] | Li SH, Liu YH, Zhang T, et al. A tetrahedral framework DNA-based bioswitchable miRNA inhibitor delivery system: Application to skin anti-aging[J]. Adv Mater, 2022, 34(46): e2204287. |
[37] | Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: An update[J]. Injury, 2005, 36(Suppl 3): S20-S27. |
[38] | Li SH, Liu YH, Tian TR, et al. Bioswitchable delivery of microRNA by framework nucleic acids: Application to bone regeneration[J]. Small, 2021, 17(47): e2104359. |
[39] | Singh M, Gonegandla GS. Bisphosphonate-induced osteonecrosis of the jaws (BIONJ)[J]. J Maxillofac Oral Surg, 2020, 19(2): 162-167. |
[40] | Zhao D, Cui WT, Liu MT, et al. Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angiogenesis and M2 polarization[J]. ACS Appl Mater Interfaces, 2020, 12(40): 44508-44522. |
[41] |
Zhu WW, Xu RY, Du JY, et al. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw[J]. FASEB J, 2019, 33(4): 5208-5219.
doi: 10.1096/fj.201801791RR pmid: 30624969 |
[42] | Sandhya P, Kurien BT, Danda D, et al. Update on pathogenesis of sjogren’s syndrome[J]. Curr Rheumatol Rev, 2017, 13(1): 5-22. |
[43] | Guisado-Vasco P, Silva M, Duarte-Millán MA, et al. Quantitative assessment of interstitial lung disease in Sjögren’s syndrome[J]. PLoS One, 2019, 14(11): e0224772. |
[44] | Garber K. Immunology: A tolerant approach[J]. Nature, 2014, 507(7493): 418-420. |
[45] | Gao S, Wang Y, Li YJ, et al. Tetrahedral framework nucleic acids reestablish immune tolerance and restore saliva secretion in a sjögren’s syndrome mouse model[J]. ACS Appl Mater Interfaces, 2021, 13(36): 42543-42553. |
[46] | Xie XP, Ma WJ, Li G, et al. Tetrahedral framework nucleic acids alleviate irradiation-induced salivary gland damage[J]. Cell Prolif, 2023, 56(4): e13381. |
[47] |
Blakaj A, Bonomi M, Gamez ME, et al. Oral mucositis in head and neck cancer: Evidence-based management and review of clinical trial data[J]. Oral Oncol, 2019, 95: 29-34.
doi: S1368-8375(19)30161-7 pmid: 31345391 |
[48] | Zhang GR, Huang LW, Feng MG, et al. Nano shield: A new tetrahedral framework nucleic acids-based solution to radiation-induced mucositis[J]. Nanoscale, 2023, 15(17): 7877-7893. |
[49] | Akhtar A, Andleeb A, Waris TS, et al. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics[J]. J Control Release, 2021, 330: 1152-1167. |
[50] |
Fattah AY, Gurusinghe ADR, Gavilan J, et al. Facial nerve grading instruments: Systematic review of the literature and suggestion for uniformity[J]. Plast Reconstr Surg, 2015, 135(2): 569-579.
pmid: 25357164 |
[51] | Li JJ, Yao YX, Wang Y, et al. Modulation of the crosstalk between schwann cells and macrophages for nerve regeneration: A therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system[J]. Adv Mater, 2022, 34(46): e2202513. |
[52] | Xie Z, Shen ZS, Zhan PM, et al. Functional dental pulp regeneration: Basic research and clinical translation[J]. Int J Mol Sci, 2021, 22(16): 8991. |
[53] |
Liu H, Gronthos S, Shi ST. Dental pulp stem cells[J]. Methods Enzymol, 2006, 419: 99-113.
pmid: 17141053 |
[54] | Wei XL, Xu HX, Zhou MQ, et al. Chemically modified microRNA delivery via DNA tetrahedral frameworks for dental pulp regeneration[J]. J Nanobiotechnology, 2024, 22(1): 150. |
[55] |
Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820.
doi: 10.1016/S0140-6736(05)67728-8 pmid: 16298220 |
[56] | Chen FM, Jin Y. Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities[J]. Tissue Eng Part B Rev, 2010, 16(2): 219-255. |
[57] | Zhang Q, Lin SY, Shi SR, et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses[J]. ACS Appl Mater Interfaces, 2018, 10(4): 3421-3430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||