Stomatology ›› 2023, Vol. 43 ›› Issue (8): 679-685.doi: 10.13591/j.cnki.kqyx.2023.08.002
• Basic Research • Previous Articles Next Articles
SHEN Xiaojing1,LIU Hairong1,LI Hua2,LI Linlin3,WANG Lewei4,YUAN Rongtao1,GUO Qingyuan1,ZHAO Peng1()
Revised:
2023-04-04
Online:
2023-08-28
Published:
2023-08-23
CLC Number:
SHEN Xiaojing, LIU Hairong, LI Hua, LI Linlin, WANG Lewei, YUAN Rongtao, GUO Qingyuan, ZHAO Peng. Effects of total flavonoids of rhizomadrynariae on proliferation and apoptosis of alveolar bone osteoblasts during osseointegration of oral implants[J]. Stomatology, 2023, 43(8): 679-685.
[1] |
Zhang Y, Alghamdi HS, et al. Surface engineering for dental implantology: Favoring tissue responses along the implant[J]. Tissue Eng Part A, 2022, 28(11/12):555-572.
doi: 10.1089/ten.tea.2021.0230 |
[2] | Zhao K, Wang F, Huang W, et al. Comparison of dental implant performance following vertical alveolar bone augmentation with alveolar distraction osteogenesis or autogenousonlay bone grafts: A retrospective cohort study[J]. J Oral MaxillofacSurg, 2017, 75(10):2099-2114. |
[3] | Ferreira FNH, Moreira Neto JJS, de Negreiros WA, et al. Evaluation of extra-narrow diameter implants in the oral rehabilitation of young patients after oral trauma: A prospective study[J/OL]. Dent Traumatol, 2023[2023-03-10]. https://pubmed.ncbi.nlm.nih.gov/36700305/. |
[4] |
Almeida Freires I, Santaella GM, de CássiaOrlandiSardi J, et al. The alveolar bone protective effects of natural products: A systematic review[J]. Arch Oral Biol, 2018, 87: 196-203.
doi: S0003-9969(17)30402-8 pmid: 29306777 |
[5] |
Maekawa S, Cho YD, Kauffmann F, et al. BMP gene-immobilization to dental implants enhances bone regeneration[J]. Adv Mater Interfaces, 2022, 9(22):2200531.
doi: 10.1002/admi.v9.22 |
[6] |
Pan ZF, He Q, Zeng JX, et al. Naringenin protects against iron overload-induced osteoarthritis by suppressing oxidative stress[J]. Phytomedicine, 2022, 105: 154330.
doi: 10.1016/j.phymed.2022.154330 |
[7] |
Sun WP, Li MY, Xie L, et al. Exploring the mechanism of total flavonoids of drynariaerhizoma to improve large bone defects by network pharmacology and experimental assessment[J]. Front Pharmacol, 2021, 12: 603734.
doi: 10.3389/fphar.2021.603734 |
[8] |
Kang SN, Lee JS, Park JH, et al. In vitro anti-osteoporosis properties of diverse Korean Drynariaerhizoma phenolic extracts[J]. Nutrients, 2014, 6(4):1737-1751.
doi: 10.3390/nu6041737 |
[9] |
Chen GY, Luo J, Liu Y, et al. Network pharmacology analysis and experimental validation to investigate the mechanism of total flavonoids of rhizomadrynariae in treating rheumatoid arthritis[J]. Drug Des Dev Ther, 2022, 16: 1743-1766.
doi: 10.2147/DDDT.S354946 |
[10] |
Lin HX, Wang XT, Li ZG, et al. Total flavonoids of Rhizomadrynariae promote angiogenesis and osteogenesis in bone defects[J]. Phytother Res, 2022, 36(9):3584-3600.
doi: 10.1002/ptr.v36.9 |
[11] |
Shen Z, Dong W, Chen ZH, et al. Total flavonoids of RhizomaDrynariae enhances CD31hiEmcnhi vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF-BB/VEGF/RUNX2/OSX signaling axis[J]. Int J Mol Med, 2022, 50(3):112.
doi: 10.3892/ijmm |
[12] |
Sufianov A, Beilerli A, Begliarzade S, et al. The role of noncoding RNAs in the osteogenic differentiation of human periodontal ligament-derived cells[J]. Non Coding RNA Res, 2023, 8(1):89-95.
doi: 10.1016/j.ncrna.2022.11.003 |
[13] |
Zhang Y, Zhuang ZK, Wei QS, et al. Inhibition of miR-93-5p promotes osteogenic differentiation in a rabbit model of trauma-induced osteonecrosis of the femoral head[J]. FEBS Open Bio, 2021, 11(8):2152-2165.
doi: 10.1002/feb4.v11.8 |
[14] |
Vlacic-Zischke J, Hamlet SM, Friis T, et al. The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts[J]. Biomaterials, 2011, 32(3):665-671.
doi: 10.1016/j.biomaterials.2010.09.025 pmid: 20933273 |
[15] |
Xu YK, Hirata E, Iizumi Y, et al. Single-walled carbon nanotube membranes accelerate active osteogenesis in bone defects: Potential of guided bone regeneration membranes[J]. ACS Biomater Sci Eng, 2022, 8(4):1667-1675.
doi: 10.1021/acsbiomaterials.1c01542 pmid: 35258943 |
[16] |
Blair HC, Larrouture QC, Li YN, et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro[J]. Tissue Eng Part B Rev, 2017, 23(3):268-280.
doi: 10.1089/ten.teb.2016.0454 |
[17] | ShafiuKamba A, Zakaria ZA. Osteoblasts growth behaviour on bio-based calcium carbonate aragonite nanocrystal[J]. Biomed Res Int, 2014, 2014: 215097. |
[18] |
Yusa K, Yamamoto O, Iino M, et al. Eluted zinc ions stimulate osteoblast differentiation and mineralization in human dental pulp stem cells for bone tissue engineering[J]. Arch Oral Biol, 2016, 71: 162-169.
doi: S0003-9969(16)30189-3 pmid: 27521529 |
[19] |
Liu Q, Li M, Wang SY, et al. Recent advances of osterix transcription factor in osteoblast differentiation and bone formation[J]. Front Cell Dev Biol, 2020, 8: 601224.
doi: 10.3389/fcell.2020.601224 |
[20] |
Li SY, Zhou HL, Hu C, et al. Total flavonoids of rhizomadrynar-iae promotes differentiation of osteoblasts and growth of bone graft in induced membrane partly by activating Wnt/β-catenin signaling pathway[J]. Front Pharmacol, 2021, 12: 675470.
doi: 10.3389/fphar.2021.675470 |
[21] | 黄晓菲, 袁苏健, 杨成. 骨碎补总黄酮依赖PI3K/Akt通路与牙髓干细胞的成骨分化[J]. 中国组织工程研究, 2013, 17(1):92-97. |
[22] | 曾辉, 赵许兵, 李子夏, 等. 骨碎补总黄酮对牙周炎大鼠龈沟液骨钙素及牙槽骨骨密度的影响[J]. 贵州医药, 2016, 40(5):460-462. |
[23] |
Kelch S, Balmayor ER, Seeliger C, et al. miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients[J]. Sci Rep, 2017, 7(1):15861.
doi: 10.1038/s41598-017-16113-x pmid: 29158518 |
[24] |
Yang L, Cheng P, Chen C, et al. miR-93/Sp7 function loop mediates osteoblast mineralization[J]. J Bone Miner Res, 2012, 27(7):1598-1606.
doi: 10.1002/jbmr.1621 pmid: 22467200 |
[25] |
Abuna RPF, Oliveira FS, Adolpho LF, et al. Frizzled 6 disruption suppresses osteoblast differentiation induced by nanotopography through the canonical Wnt signaling pathway[J]. J Cell Physiol, 2020, 235(11):8293-8303.
doi: 10.1002/jcp.29674 pmid: 32239701 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 217
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 278
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||