口腔医学 ›› 2024, Vol. 44 ›› Issue (12): 952-956.doi: 10.13591/j.cnki.kqyx.2024.12.014
收稿日期:
2023-10-12
出版日期:
2024-12-28
发布日期:
2024-12-26
通讯作者:
刘 凯 E-mail:基金资助:
ZHANG Xinyun1,MAO Guangtong2,WANG Jintao3,HE Rui3,ZHONG Liangjun3,LIU Kai4()
Received:
2023-10-12
Online:
2024-12-28
Published:
2024-12-26
摘要:
慢性阻塞性肺疾病是一种以持续进行性气流受限和慢性炎症为特征的肺部疾病,与牙周炎的发生发展密切相关,两者存在共同危险因素并相互影响。本文基于现有研究,从共同分子机制入手,阐述牙周炎与慢性阻塞性肺疾病的相关性及对患者的影响,以期为优化临床治疗提供理论方向。
中图分类号:
张馨允, 毛广通, 王进涛, 贺瑞, 钟良军, 刘凯. 牙周炎与慢性阻塞性肺疾病的分子机制联系[J]. 口腔医学, 2024, 44(12): 952-956.
ZHANG Xinyun, MAO Guangtong, WANG Jintao, HE Rui, ZHONG Liangjun, LIU Kai. The molecular mechanism association between periodontitis and chronic obstructive pulmonary disease[J]. Stomatology, 2024, 44(12): 952-956.
[1] |
Liu SQ, Fu Y, Ziebolz D, et al. Transcriptomic analysis reveals pathophysiological relationship between chronic obstructive pulmonary disease (COPD) and periodontitis[J]. BMC Med Genomics, 2022, 15(1):130.
doi: 10.1186/s12920-022-01278-w pmid: 35676670 |
[2] | Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification[J]. J Clin Periodontol, 2018, 45(Suppl 20):S1-S8. |
[3] |
Righolt AJ, Jevdjevic M, Marcenes W, et al. Global-, regional-, and country-level economic impacts of dental diseases in 2015[J]. J Dent Res, 2018, 97(5):501-507.
doi: 10.1177/0022034517750572 pmid: 29342371 |
[4] | Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease[J]. Periodontol 2000, 2020, 83(1):26-39. |
[5] |
Zhou W, Su L, Duan XY, et al. microRNA-21 down-regulates inflammation and inhibits periodontitis[J]. Mol Immunol, 2018, 101:608-614.
doi: S0161-5890(18)30153-6 pmid: 29884447 |
[6] | Dong JJ, Li W, Wang Q, et al. Relationships between oral microecosystem and respiratory diseases[J]. Front Mol Biosci, 2022, 8:718222. |
[7] |
Bansal M, Khatri M, Taneja V. Potential role of periodontal infection in respiratory diseases-a review[J]. J Med Life, 2013, 6(3):244-248.
pmid: 24155782 |
[8] |
Hattab Y, Alhassan S, Balaan M, et al. Chronic obstructive pulmonary disease[J]. Crit Care Nurs Q, 2016, 39(2):124-130.
doi: 10.1097/CNQ.0000000000000105 pmid: 26919673 |
[9] | Vollmer A, Vollmer M, Lang G, et al. Associations between periodontitis and COPD: An artificial intelligence-based analysis of NHANES Ⅲ[J]. J Clin Med, 2022, 11(23):7210. |
[10] |
Winning L, Patterson CC, Cullen KM, et al. Chronic periodontitis and reduced respiratory function[J]. J Clin Periodontol, 2019, 46(3):266-275.
doi: 10.1111/jcpe.13076 pmid: 30712268 |
[11] | Zeng XT, Tu ML, Liu DY, et al. Periodontal disease and risk of chronic obstructive pulmonary disease: A meta-analysis of observational studies[J]. PLoS One, 2012, 7(10):e46508. |
[12] |
Gomes-Filho IS, Cruz SSD, Trindade SC, et al. Periodontitis and respiratory diseases: A systematic review with meta-analysis[J]. Oral Dis, 2020, 26(2):439-446.
doi: 10.1111/odi.13228 pmid: 31715080 |
[13] |
Kucukcoskun M, Baser U, Oztekin G, et al. Initial periodontal treatment for prevention of chronic obstructive pulmonary disease exacerbations[J]. J Periodontol, 2013, 84(7):863-870.
doi: 10.1902/jop.2012.120399 pmid: 23003917 |
[14] | Uemura A, Fruttiger M, D’Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation[J]. Prog Retin Eye Res, 2021, 84:100954. |
[15] |
Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors[J]. Nat Med, 2003, 9(6):669-676.
doi: 10.1038/nm0603-669 pmid: 12778165 |
[16] |
Eguchi R, Kawabe JI, Wakabayashi I. VEGF-independent angiogenic factors: Beyond VEGF/VEGFR2 signaling[J]. J Vasc Res, 2022, 59(2):78-89.
doi: 10.1159/000521584 pmid: 35152220 |
[17] | Ren B, Feng Q, He S, et al. VEGF as a potential molecular target in periodontitis: A meta-analysis and microarray data validation[J]. J Inflamm, 2021, 18(1):18. |
[18] |
Vasconcelos RC, Costa AD, Freitas RD, et al. Immunoexpression of HIF-1α and VEGF in periodontal disease and healthy gingival tissues[J]. Braz Dent J, 2016, 27(2):117-122.
doi: 10.1590/0103-6440201600533 pmid: 27058371 |
[19] |
Marconi GD, Diomede F, Pizzicannella J, et al. Enhanced VEGF/VEGF-R and RUNX2 expression in human periodontal ligament stem cells cultured on sandblasted/etched titanium disk[J]. Front Cell Dev Biol, 2020, 8:315.
doi: 10.3389/fcell.2020.00315 pmid: 32478069 |
[20] | Wang YL, Yang CC. Enhanced VEGF-A expression and mediated angiogenic differentiation in human gingival fibroblasts by stimulating with TNF-α in vitro[J]. J Dent Sci, 2022, 17(2):876-881. |
[21] |
Ding A, Bian YY, Zhang ZH. SP1/TGF-β1/SMAD2 pathway is involved in angiogenesis during osteogenesis[J]. Mol Med Rep, 2020, 21(3):1581-1589.
doi: 10.3892/mmr.2020.10965 pmid: 32016481 |
[22] | Du J, Yin GB, Hu YD, et al. Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting angiogenesis via the TGFβ/ALK1/Smad1/5 signaling pathway[J]. Aging, 2020, 13(1):877-893. |
[23] | Khojasteh A, Fahimipour F, Jafarian M, et al. Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(7):1767-1777. |
[24] | Ishii M, Takahashi M, Murakami J, et al. Vascular endothelial growth factor-C promotes human mesenchymal stem cell migration via an ERK-and FAK-dependent mechanism[J]. Mol Cell Biochem, 2019, 455(1/2):185-193. |
[25] | Kranti K, Mani R, Elizabeth A. Immunoexpression of vascular endothelial growth factor and Ki-67 in human gingival samples: An observational study[J]. Indian J Dent, 2015, 6(2):69-74. |
[26] |
Pizzicannella J, Gugliandolo A, Orsini T, et al. Engineered extracellular vesicles from human periodontal-ligament stem cells increase VEGF/VEGFR2 expression during bone regeneration[J]. Front Physiol, 2019, 10:512.
doi: 10.3389/fphys.2019.00512 pmid: 31114512 |
[27] | Iwasaki K, Akazawa K, Nagata M, et al. Angiogenic effects of secreted factors from periodontal ligament stem cells[J]. Dent J, 2021, 9(1):9. |
[28] |
Zhang Z, Shuai Y, Zhou F, et al. PDLSCs regulate angiogenesis of periodontal ligaments via VEGF transferred by exosomes in periodontitis[J]. Int J Med Sci, 2020, 17(5):558-567.
doi: 10.7150/ijms.40918 pmid: 32210705 |
[29] | Gölz L, Memmert S, Rath-Deschner B, et al. Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-κB activation in PDL cells and periodontal diseases[J]. Mediators Inflamm, 2015, 2015:438085. |
[30] | Chen FM, Zhang J, Zhang M, et al. A review on endogenous regenerative technology in periodontal regenerative medicine[J]. Biomaterials, 2010, 31(31):7892-7927. |
[31] | Li L, Shang LL, Kang WY, et al. Neuregulin-1 promotes the proliferation, migration, and angiogenesis of human periodontal ligament stem cells in vitro[J]. Cell Biol Int, 2022, 46(5):792-805. |
[32] |
Mura M, dos Santos CC, Stewart D, et al. Vascular endothelial growth factor and related molecules in acute lung injury[J]. J Appl Physiol, 2004, 97(5):1605-1617.
doi: 10.1152/japplphysiol.00202.2004 pmid: 15475552 |
[33] |
Wang L, Xu ZB, Chen B, et al. The role of vascular endothelial growth factor in small-airway remodelling in a rat model of chronic obstructive pulmonary disease[J]. Sci Rep, 2017, 7:41202.
doi: 10.1038/srep41202 pmid: 28117425 |
[34] | Varet J, Douglas SK, Gilmartin L, et al. VEGF in the lung: A role for novel isoforms[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 298(6):L768-L774. |
[35] | Carmeliet P. Angiogenesis in life, disease and medicine[J]. Nature, 2005, 438(7070):932-936. |
[36] |
Nokhbehsaim M, Deschner B, Winter J, et al. Contribution of orthodontic load to inflammation-mediated periodontal destruction[J]. J Orofac Orthop, 2010, 71(6):390-402.
doi: 10.1007/s00056-010-1031-7 pmid: 21082302 |
[37] |
Fahey E, Doyle SL. IL-1 family cytokine regulation of vascular permeability and angiogenesis[J]. Front Immunol, 2019, 10:1426.
doi: 10.3389/fimmu.2019.01426 pmid: 31293586 |
[38] | 毕翔宇, 孙安, 何惠宇. 联合VEGF-165和PDGF-BB促进骨髓间充质干细胞血管化的体内研究[J]. 口腔医学, 2020, 40(1):7-12. |
[39] |
Jiang M, Fang YS, Li Y, et al. VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway[J]. Dev Cell, 2021, 56(11):1646-1660.e5.
doi: 10.1016/j.devcel.2021.04.027 pmid: 34010630 |
[40] | Reina-Torres E, Wen JC, Liu KC, et al. VEGF as a paracrine regulator of conventional outflow facility[J]. Invest Ophthalmol Vis Sci, 2017, 58(3):1899-1908. |
[41] |
Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology[J]. Annu Rev Pathol, 2014, 9:47-71.
doi: 10.1146/annurev-pathol-012513-104720 pmid: 23937437 |
[42] | Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases[J]. Nat Rev Mol Cell Biol, 2004, 5(5):343-354. |
[43] | Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer[J]. Front Oncol, 2022, 12:984525. |
[44] |
Ratcliffe PJ. HIF-1 and HIF-2: Working alone or together in hypoxia[J]. J Clin Invest, 2007, 117(4):862-865.
doi: 10.1172/JCI31750 pmid: 17404612 |
[45] |
Afacan B, Öztürk VÖ, Paşalı Ç, et al. Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease[J]. J Periodontol, 2019, 90(7):788-797.
doi: 10.1002/JPER.18-0412 pmid: 30536725 |
[46] | BARNES P J, KARIN M. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases[J]. N Engl J Med, 1997, 336(15):1066-1071. |
[47] |
Shukla SD, Walters EH, Simpson JL, et al. Hypoxia-inducible factor and bacterial infections in chronic obstructive pulmonary disease[J]. Respirology, 2020, 25(1):53-63.
doi: 10.1111/resp.13722 pmid: 31663668 |
[48] | Rong BX, Liu YF, Li M, et al. Correlation of serum levels of HIF-1α and IL-19 with the disease progression of COPD: A retrospective study[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13:3791-3803. |
[49] | Zhang HX, Yang JJ, Zhang SA, et al. HIF-1α promotes inflammatory response of chronic obstructive pulmonary disease by activating EGFR/PI3K/AKT pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(18):6077-6084. |
[50] |
Laddha AP, Kulkarni YA. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders[J]. Respir Med, 2019, 156:33-46.
doi: S0954-6111(19)30261-6 pmid: 31421589 |
[51] | Guan RJ, Wang J, Li ZY, et al. Sodium tanshinone IIA sulfonate decreases cigarette smoke-induced inflammation and oxidative stress via blocking the activation of MAPK/HIF-1α signaling pathway[J]. Front Pharmacol, 2018, 9:263. |
[52] | Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions[J]. Exp Mol Med, 2004, 36(1):1-12. |
[53] | Yan J, Duan YJ, Cheng MY. Clinical diagnostic value of serum GABA, NE, ET-1, and VEGF in chronic obstructive pulmonary disease with pulmonary hypertension[J]. Int J Chron Obstruct Pulmon Dis, 2023, 18:1803-1813. |
[54] |
Li H, Shi KH, Zhao Y, et al. TIMP-1 and MMP-9 expressions in COPD patients complicated with spontaneous pneumothorax and their correlations with treatment outcomes[J]. Pak J Med Sci, 2020, 36(2):192-197.
doi: 10.12669/pjms.36.2.1244 pmid: 32063958 |
[55] | Luchian I, Goriuc A, Sandu D, et al. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes[J]. Int J Mol Sci, 2022, 23(3):1806. |
[56] | 赵宇琪, 田胜兰, 李莹, 等. 活化型基质金属蛋白酶-8作为牙周生物标志物的研究进展[J]. 口腔医学, 2022, 42(4):373-376. |
[57] | Zhang HZ, Liu LS, Jiang CM, et al. MMP9 protects against LPS-induced inflammation in osteoblasts[J]. Innate Immun, 2020, 26(4):259-269. |
[58] | Hooshiar SH, Tobeiha M, Jafarnejad S. Soy isoflavones and bone health: Focus on the RANKL/RANK/OPG pathway[J]. Biomed Res Int, 2022, 2022:8862278. |
[59] |
Arbaningsih SR, Syarani F, Ganie RA, et al. The levels of vitamin D, metalloproteinase-9 and tissue inhibitor metalloproteinase-1 in COPD patients, healthy smokers and non-smokers of Indonesian citizens[J]. Open Access Maced J Med Sci, 2019, 7(13):2123-2126.
doi: 10.3889/oamjms.2019.612 pmid: 31456837 |
[60] |
Dimic-Janjic S, Hoda MA, Milenkovic B, et al. The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity[J]. Eur J Med Res, 2023, 28(1):127.
doi: 10.1186/s40001-023-01094-7 pmid: 36935521 |
[61] | Mercer PF, Shute JK, Bhowmik A, et al. MMP-9, TIMP-1 and inflammatory cells in sputum from COPD patients during exacerbation[J]. Respir Res, 2005, 6(1):151. |
[62] | Wang XY, Rojas-Quintero J, Wilder J, et al. Tissue inhibitor of metalloproteinase-1 promotes polymorphonuclear neutrophil (PMN) pericellular proteolysis by anchoring matrix metalloproteinase-8 and-9 to PMN surfaces[J]. J Immunol, 2019, 202(11):3267-3281. |
[63] |
Li YX, Lu Y, Zhao Z, et al. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: A systematic review and meta-analysis[J]. J Res Med Sci, 2016, 21:12.
pmid: 27904558 |
[64] |
Kwiatkowska S, Noweta K, Zieba M, et al. Enhanced exhalation of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in patients with COPD exacerbation: A prospective study[J]. Respiration, 2012, 84(3):231-241.
doi: 10.1159/000339417 pmid: 22832426 |
[65] | Zhou XM, Hou G, Gu DX, et al. Peroxisome proliferator-activated receptor-γ in induced sputum is correlated with MMP-9/TIMP-1 imbalance and formation of emphysema in COPD patients[J]. J Thorac Dis, 2017, 9(10):3703-3710. |
[66] | Wells JM, Parker MM, Oster RA, et al. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene[J]. JCI Insight, 2018, 3(22):e123614. |
[67] | Yu WC, Cong JP, Mi LY. Expressions of TOLL-like receptor 4 (TLR-4) and matrix metalloproteinase 9 (MMP-9)/Tissue inhibitor of metalloproteinase 1 (TIMP-1) in pulmonary blood vessels with chronic obstructive pulmonary diseases and their relationships with pulmonary vascular remodelling[J]. Rev Assoc Med Bras (1992), 2018, 64(4):361-367. |
[1] | 朱莎莎, 田卫东, 郭淑娟. 不同类型程序性细胞死亡在牙周炎中的研究进展[J]. 口腔医学, 2024, 44(8): 624-629. |
[2] | 徐华兴, 韦晓玲. 多不饱和脂肪酸代谢产物在口腔疾病中的作用及应用研究进展[J]. 口腔医学, 2024, 44(7): 545-550. |
[3] | 林仁杰, 戴安娜, 汪淑华, 丁佩惠. 糖尿病影响牙周炎患者口腔龈下菌群和唾液菌群组成的研究进展[J]. 口腔医学, 2024, 44(6): 458-461. |
[4] | 王雪奎, 孙瑶. 中性粒细胞与牙周炎关系的研究进展[J]. 口腔医学, 2024, 44(4): 292-296. |
[5] | 张志豪, 杨益, 王月秋, 孙思怡, 陈虹, 舒菲, 刘梅. 克罗恩病和牙周炎的共有免疫相关基因及其作为诊断生物标志物的潜力[J]. 口腔医学, 2024, 44(3): 184-191. |
[6] | 肖诗梦, 刘翼, 李茂雪, 丁一. 激光辅助伴2型糖尿病牙周炎非手术治疗的疗效评价[J]. 口腔医学, 2024, 44(3): 161-167. |
[7] | 张家铭, 段燕, 武云霞. 活性氧与线粒体自噬在牙周炎中的作用[J]. 口腔医学, 2024, 44(3): 237-240. |
[8] | 戴柯, 戴周丽, 刘荣场, 查光玉, 曹明国. 牙龈卟啉单胞菌在非酒精性脂肪肝病进展中的作用[J]. 口腔医学, 2024, 44(2): 152-155. |
[9] | 任佳宇, 任秀云. 氧化应激及抗氧化剂辅助治疗牙周炎的研究进展[J]. 口腔医学, 2024, 44(2): 148-151. |
[10] | 赵溟昱, 时彬冕, 谢旭东, 许春梅, 王骏. 木犀草素在牙周炎防治中的研究进展[J]. 口腔医学, 2024, 44(2): 126-129. |
[11] | 吴程宇, 叶宇, 薛昌敖. 汉族人群睡眠质量与牙周炎进展的相关性研究[J]. 口腔医学, 2024, 44(10): 765-769. |
[12] | 唐路,薛栋,杨文文,张献丽,陆夏,赵颖. 不同程度颈动脉狭窄患者动脉粥样硬化斑块中牙周致病菌的分布研究[J]. 口腔医学, 2024, 44(1): 31-35. |
[13] | 唐金鑫, 汤春波, 宋鑫, 芮娜, 薛昌敖. 牙周炎患者发生种植体周围炎风险预测模型的构建[J]. 口腔医学, 2023, 43(8): 706-710. |
[14] | 张敏, 梅幼敏, 袁建芬, 孙敬伟, 徐家丽, 严骏毅, 李乔, 周艳, 沈想. 127例幽门螺杆菌感染与牙周炎的相关性分析[J]. 口腔医学, 2023, 43(8): 702-705. |
[15] | 蔡搏搏, 姒蜜思. 重度牙周炎患者全口即刻种植的研究进展[J]. 口腔医学, 2023, 43(7): 663-666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||