[1] |
Cho K, Rajan G, Farrar P, et al. Dental resin composites: A review on materials to product realizations[J]. Compos Part B Eng, 2022, 230: 109495.
|
[2] |
Breschi L, Maravic T, Cunha SR, et al. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications[J]. Dent Mater, 2018, 34(1): 78-96.
doi: S0109-5641(17)31120-X
pmid: 29179971
|
[3] |
Simmer FS, da Silva EM, Bezerra RDSG, et al. Bond stability of conventional adhesive system with MMP inhibitors to superficial and deep dentin[J]. J Mech Behav Biomed Mater, 2019, 100: 103402.
|
[4] |
Frassetto A, Breschi L, Turco G, et al. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability: A literature review[J]. Dent Mater, 2016, 32(2): e41-53.
|
[5] |
Sabatini C, Aguilar RJ, Zhang ZW, et al. Mechanical characterization and adhesive properties of a dental adhesive modified with a polymer antibiotic conjugate[J]. J Mech Behav Biomed Mater, 2022, 129: 105153.
|
[6] |
Bourbia M, Ma D, Cvitkovitch DG, et al. Cariogenic bacteria degrade dental resin composites and adhesives[J]. J Dent Res, 2013, 92(11): 989-994.
doi: 10.1177/0022034513504436
pmid: 24026951
|
[7] |
Han F, Sun ZD, Xie HF, et al. Improved bond performances of self-etch adhesives to enamel through increased MDP-Ca salt formation phosphoric acid pre-etching[J]. Dent Mater, 2022, 38(1): 133-146.
|
[8] |
Jin X, Han F, Wang Q, et al. The roles of 10-methacryloyloxydecyl dihydrogen phosphate and its calcium salt in preserving the adhesive-dentin hybrid layer[J]. Dent Mater, 2022, 38(7): 1194-1205.
doi: 10.1016/j.dental.2022.06.007
pmid: 35715248
|
[9] |
Gimeno A, Beltrán-Debón R, Mulero M, et al. Understanding the variability of the S1' pocket to improve matrix metalloproteinase inhibitor selectivity profiles[J]. Drug Discov Today, 2020, 25(1): 38-57.
doi: S1359-6446(19)30341-1
pmid: 31513929
|
[10] |
Swetha R, Gayen C, Kumar D, et al. Biomolecular basis of matrix metallo proteinase-9 activity[J]. Future Med Chem, 2018, 10(9): 1093-1112.
doi: 10.4155/fmc-2017-0236
pmid: 29676173
|
[11] |
Singer L, Fouda A, Bourauel C. Biomimetic approaches and materials in restorative and regenerative dentistry: Review article[J]. BMC Oral Health, 2023, 23(1): 105.
doi: 10.1186/s12903-023-02808-3
pmid: 36797710
|
[12] |
Oosterlaken BM, Vena MP, de With G. mineralization of collagen[J]. Adv Mater, 2021, 33(16): e2004418.
|
[13] |
Yang QY, Zheng WQ, Zhao YP, et al. Advancing dentin remineralization: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches[J]. Dent Mater, 2024, 40(8): 1282-1295.
doi: 10.1016/j.dental.2024.06.013
pmid: 38871525
|
[14] |
Zheng H, Shi Y, Bi L, et al. Dual functions of MDP monomer with de- and remineralizing ability[J]. J Dent Res, 2022, 101(10): 1172-1180.
|
[15] |
Teshima I. Degradation of 10-methacryloyloxydecyl dihydrogen phosphate[J]. J Dent Res, 2010, 89(11): 1281-1286.
doi: 10.1177/0022034510379018
pmid: 20858773
|
[16] |
Alkattan R, Koller G, Banerji S, et al. Bis[2-(methacryloyloxy)ethyl]phosphate as a primer for enamel and dentine[J]. J Dent Res, 2021, 100(10): 1081-1089.
|
[17] |
Alkattan R, Ajaj R, Koller G, et al. A self-etch bonding system with potential to eliminate selective etching and resist proteolytic degradation[J]. J Dent, 2023, 132: 104501.
|
[18] |
Alakkad T, Burhan R, Alsebyani E, et al. A comprehensive review of the sealing abilities of various root canal sealers[J]. J Healthc Sci, 2023, 3(12): 653-659.
|
[19] |
Morales-Cerrada R, Molina-Gutierrez S, Lacroix-Desmazes P, et al. Eugenol, a promising building block for biobased polymers with cutting-edge properties[J]. Biomacromolecules, 2021, 22(9): 3625-3648.
|
[20] |
Rojo L, Vazquez B, Parra J, et al. From natural products to polymeric derivatives of“eugenol”: A new approach for preparation of dental composites and orthopedic bone cements[J]. Biomacromolecules, 2006, 7(10): 2751-2761.
|
[21] |
Almaroof A, Niazi SA, Rojo L, et al. Evaluation of dental adhesive systems incorporating an antibacterial monomer eugenyl methacrylate(EgMA)for endodontic restorations[J]. Dent Mater, 2017, 33(5): e239-e254.
|
[22] |
Alkattan R, Banerji S, Deb S. A multi-functional dentine bonding system combining a phosphate monomer with eugenyl methacrylate[J]. Dent Mater, 2022, 38(6): 1030-1043.
|
[23] |
Ikeda T, De Munck J, Shirai K, et al. Effect of air-drying and solvent evaporation on the strength of HEMA-rich versus HEMA-free one-step adhesives[J]. Dent Mater, 2008, 24(10): 1316-1323.
doi: 10.1016/j.dental.2008.02.009
pmid: 18423839
|
[24] |
Nagakane K, Yoshida Y, Hirata I, et al. Analysis of chemical interaction of 4-MET with hydroxyapatite using XPS[J]. Dent Mater J, 2006, 25(4): 645-649.
pmid: 17338295
|
[25] |
Yoshihara K, Yoshida Y, Nagaoka N, et al. Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction[J]. Acta Biomater, 2010, 6(9): 3573-3582.
|
[26] |
Peumans M, Wouters L, De Munck J, et al. Nine-year clinical performance of a HEMA-free one-step self-etch adhesive in noncarious cervical lesions[J]. J Adhes Dent, 2018, 20(3): 195-203.
doi: 10.3290/j.jad.a40630
pmid: 29904752
|
[27] |
Fehrenbach J, Isolan CP, Münchow EA. Is the presence of 10-MDP associated to higher bonding performance for self-etching adhesive systems?A meta-analysis of studies[J]. Dent Mater, 2021, 37(10): 1463-1485.
|
[28] |
Ito S, Iijima M, Motai F, et al. Effects of calcium salts of acidic monomers on mineral induction of phosphoprotein immobilized to agarose beads[J]. J Biomed Mater Res A, 2012, 100(10): 2760-2765.
doi: 10.1002/jbm.a.34212
pmid: 22623052
|
[29] |
Rao YX, Qiu YJ, Altankhishig B, et al. Novel universal bond containing bioactive monomer promotes odontoblast differentiation in vitro[J]. J Funct Biomater, 2023, 14(10): 506.
|
[30] |
Thaweboon S, Saito T, Nagano K, et al. Evaluation of an adhesive containing calcium salt of acidic monomers on inhibition of biofilm formation of bacteria related to root caries[J]. Key Eng Mater, 2020, 853: 41-45.
|
[31] |
Qiu YJ, Saito T. Novel bioactive adhesive monomer CMET promotes odontogenic differentiation and dentin regeneration[J]. Int J Mol Sci, 2021, 22(23): 12728.
|
[32] |
Qiu YJ, Tang J, Saito T. A novel bio-active adhesive monomer induces odontoblast differentiation: A comparative study[J]. Int Endod J, 2020, 53(10): 1413-1429.
doi: 10.1111/iej.13365
pmid: 33460206
|
[33] |
Song LY, Sarikaya R, Ye Q, et al. Multifunctional monomer acts as co-initiator and crosslinker to provide autonomous strengthening with enhanced hydrolytic stability in dental adhesives[J]. Dent Mater, 2020, 36(2): 284-295.
doi: S0109-5641(19)30907-8
pmid: 31806495
|
[34] |
Ezazi M, Ye Q, Misra A, et al. Autonomous-strengthening adhesive provides hydrolysis-resistance and enhanced mechanical properties in wet conditions[J]. Molecules, 2022, 27(17): 5505.
|
[35] |
Song LY, Ye Q, Ge XP, et al. Mimicking nature: Self-strengthening properties in a dental adhesive[J]. Acta Biomater, 2016, 35: 138-152.
doi: 10.1016/j.actbio.2016.02.019
pmid: 26883773
|
[36] |
Song XZ, Segura-Egea JJ, Díaz-Cuenca A. Sol-gel technologies to obtain advanced bioceramics for dental therapeutics[J]. Molecules, 2023, 28(19): 6967.
|
[37] |
Sarikaya R, Song LY, Ye Q, et al. Evolution of network structure and mechanical properties in autonomous-strengthening dental adhesive[J]. Polymers, 2020, 12(9): 2076.
|