Stomatology ›› 2024, Vol. 44 ›› Issue (11): 876-880.doi: 10.13591/j.cnki.kqyx.2024.11.015
• Review • Previous Articles
LI Yuqian,JIANG Jing,CHEN Menghan,SHAO Yiqian,FENG Jianying()
Received:
2023-09-16
Online:
2024-11-28
Published:
2024-11-18
CLC Number:
LI Yuqian, JIANG Jing, CHEN Menghan, SHAO Yiqian, FENG Jianying. Research progress of PLGA microspheres in stomatology[J]. Stomatology, 2024, 44(11): 876-880.
[1] | 陆新月, 吕慧侠. 微球给药系统载体材料的研究进展[J]. 中国药科大学学报, 2018, 49(5): 528-536. |
[2] |
孔思思, 米秀芳, 舒琦, 等. 醋酸亮丙瑞林缓释微球主要特性评价及临床应用研究进展[J]. 中国药学杂志, 2022, 57(15): 1241-1246.
doi: 10.11669/cpj.2022.15.003 |
[3] |
Koerner J, Horvath D, Groettrup M. Harnessingdendritic cells for poly (D, L-lactide- co-glycolide) microspheres (PLGA MS)-mediated anti-tumor therapy[J]. Front Immunol, 2019, 10: 707.
doi: 10.3389/fimmu.2019.00707 pmid: 31024545 |
[4] | Kim SH, Moon JH, Jeong SU, et al. Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone[J]. Int J Nanomedicine, 2019, 14: 5229-5242. |
[5] | 苏玲, 苏燕评, 俞昌喜. 天然药物聚乳酸或聚乳酸-羟基乙酸共聚物微球的研究进展[J]. 海峡药学, 2017, 29(8): 1-4. |
[6] | 韩宁娟, 牛睿, 葛维娟, 等. 在药剂学中微球制剂制备方法研究[J]. 生物化工, 2019, 5(2): 114-116. |
[7] | 张晓宇, 陈琪, 杨兴, 等. 聚乳酸-羟基乙酸共聚物微球在骨组织工程中的应用[J]. 中国组织工程研究, 2023, 27(30): 4896-4903. |
[8] | Szlęk J, Pacławski A, Lau R, et al. Empirical search for factors affecting mean particle size of PLGA microspheres containing macromolecular drugs[J]. Comput Methods Programs Biomed, 2016, 134: 137-147. |
[9] |
Su Y, Zhang BL, Sun RW, et al. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-1418.
doi: 10.1080/10717544.2021.1938756 pmid: 34184949 |
[10] | 李乐, 焦杰, 周卫. 不同结构特征的微球制剂在药物递送中的研究进展[J]. 中国新药杂志, 2021, 30(17): 1592-1599. |
[11] | Ding DW, Zhu QD. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 1041-1060. |
[12] |
Essa D, Kondiah PPD, Choonara YE, et al. The design of poly(lactide-co-glycolide) nanocarriers for medical applications[J]. Front Bioeng Biotechnol, 2020, 8: 48.
doi: 10.3389/fbioe.2020.00048 pmid: 32117928 |
[13] |
Brauner B, Schuster C, Wirth M, et al. Trimethoprim-loaded microspheres prepared from low-molecular-weight PLGA as a potential drug delivery system for the treatment of urinary tract infections[J]. ACS Omega, 2020, 5(15): 9013-9022.
doi: 10.1021/acsomega.0c00981 pmid: 32337466 |
[14] | Wang TT, Xue P, Wang AP, et al. Pore change during degradation of octreotide acetate-loaded PLGA microspheres: The effect of polymer blends[J]. Eur J Pharm Sci, 2019, 138: 104990. |
[15] | Wan F, Yang MS. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying[J]. Int J Pharm, 2016, 498(1/2): 82-95. |
[16] |
Li X, Wei Y, Wen K, et al. Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine[J]. Eur J Pharm Biopharm, 2021, 160: 143-151.
doi: 10.1016/j.ejpb.2021.01.015 pmid: 33524537 |
[17] | Nutt JG. Continuous dopaminergic stimulation: Is it the answer to the motor complications of levodopa[J]. Mov Disord, 2007, 22(1): 1-9. |
[18] | Wang AP, Wang LX, Sun KX, et al. Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats[J]. Pharm Res, 2012, 29(9): 2367-2376. |
[19] |
Tan BW, Tang Q, Zhong YJ, et al. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration[J]. Int J Oral Sci, 2021, 13(1): 9.
doi: 10.1038/s41368-021-00113-9 pmid: 33727527 |
[20] | Cruz LJ, Stammes MA, Que I, et al. Effect of PLGA NP size on efficiency to target traumatic brain injury[J]. J Control Release, 2016, 223: 31-41. |
[21] | Zhou J, Guo DJ, Zhang Y, et al. Construction and evaluation of Fe3O4-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis[J]. ACS Appl Mater Interfaces, 2014, 6(8): 5566-5576. |
[22] | Nieto K, Pei P, Wang DR,et al. In vivo controlled release of fenretinide from long-acting release depots for chemoprevention of oral squamous cell carcinoma recurrence[J]. Int J Pharm, 2018, 538(1/2): 48-56. |
[23] | Gupta P, Singh M, Kumar R, et al. Synthesis and in vitro studies of PLGA-DTX nanoconjugate as potential drug delivery vehicle for oral cancer[J]. Int J Nanomedicine, 2018, 13(T-NANO 2014 Abstracts): 67-69. |
[24] |
Srivastava S, Gupta S, Mohammad S, et al. Development of α-tocopherol surface-modified targeted delivery of 5-fluorouracil-loaded poly-D, L-lactic-co-glycolic acid nanoparticles against oral squamous cell carcinoma[J]. J Cancer Res Ther, 2019, 15(3): 480-490.
doi: 10.4103/jcrt.JCRT_263_18 pmid: 31169208 |
[25] | Mancic L, Djukic-Vukovic A, Dinic I, et al. NIR photo-driven upconversion in NaYF4: Yb, Er/PLGA particles for in vitro bioimaging of cancer cells[J]. Mater Sci Eng C Mater Biol Appl, 2018, 91: 597-605. |
[26] | 万书良, 王菲, 熊均, 等. 载SDF-1纳米粒造影剂在兔舌癌颈部转移淋巴结成像的应用以及治疗作用的初步研究[J]. 现代口腔医学杂志, 2020, 34(4): 193-196. |
[27] |
Mountziaris PM, Tzouanas SN, Sing DC, et al. Intra-articular controlled release of anti-inflammatory siRNA with biodegradable polymer microparticles ameliorates temporomandibular joint inflammation[J]. Acta Biomater, 2012, 8(10): 3552-3560.
doi: 10.1016/j.actbio.2012.06.031 pmid: 22750740 |
[28] | Zhu DW, Bai HR, Xu WN, et al. Hyaluronic acid/parecoxib-loaded PLGA microspheres for therapy of temporomandibular disorders[J]. Curr Drug Deliv, 2021, 18(2): 234-245. |
[29] | Mahamoud MY, Steinbach-Rankins JM, Demuth DR. Functional assessment of peptide-modified PLGA nanoparticles against oral biofilms in a murine model of periodontitis[J]. J Control Release, 2019, 297: 3-13. |
[30] | Yao C, Zhang QQ, Li J, et al. Implantable zoledronate-PLGA microcapsules ameliorate alveolar bone loss, gingival inflammation and oxidative stress in an experimental periodontitis rat model[J]. J Biomater Appl, 2021, 35(6): 569-578. |
[31] | Fan W, Liu DF, Li YY, et al. AgCa-PLGA submicron particles inhibit the growth and colonization of E. Faecalis and P. Gingivalis on dentin through infiltration into dentinal tubules[J]. Int J Pharm, 2018, 552(1/2): 206-216. |
[32] | Chachlioutaki K, Karavasili C, Adamoudi E, et al. Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering[J]. Biomater Adv, 2022, 133: 112723. |
[33] | Qiu W, Zhou YJ, Li ZX, et al. Application of antibiotics/antimicrobial agents on dental caries[J]. Biomed Res Int, 2020, 2020: 5658212. |
[34] | Zhang MY, Liao Y, Tong X, et al. Novel urea derivative-loaded PLGA nanoparticles to inhibit caries-associated Streptococcus mutans[J]. RSC Adv, 2022, 12(7): 4072-4080. |
[35] | Weng LT, Wu L, Guo RJ, et al. Lactobacillus cell envelope-coated nanoparticles for antibiotic delivery against cariogenic biofilm and dental caries[J]. J Nanobiotechnology, 2022, 20(1): 356. |
[36] | Chang PC, Chong LY, Dovban ASM, et al. Sequential platelet-derived growth factor-simvastatin release promotes dentoalveolar regeneration[J]. Tissue Eng Part A, 2014, 20(1/2): 356-364. |
[37] |
Boda SK, Almoshari Y, Wang HJ, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration[J]. Acta Biomater, 2019, 85: 282-293.
doi: S1742-7061(18)30776-1 pmid: 30605770 |
[38] | Wang Y, Wei Y, Zhang XH, et al. PLGA/PDLLA core-shell submicron spheres sequential release system: Preparation, characterization and promotion of bone regeneration in vitro and in vivo[J]. Chem Eng J, 2015, 273: 490-501. |
[39] | Vyas K, Rathod M, Patel MM. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer[J]. Nanomedicine, 2023, 49: 102662. |
[1] | LI Jiajie, LIN Yunfeng. Potential application of framework nucleic acids in stomatology [J]. Stomatology, 2024, 44(9): 641-647. |
[2] | DONG Weijie, SU Tingshu, XIN Xianzhen. Effects of quercetin loaded gelatin microspheres on proliferation and differentiation of MC3T3-E1 [J]. Stomatology, 2024, 44(7): 494-499. |
[3] | ZHANG Xiatong, WU Wenzhi, CHEN Zhuo. Progress of single-cell RNA sequencing and spatial transcriptomics in stomatology [J]. Stomatology, 2024, 44(3): 214-221. |
[4] | ZHU Yulei, WANG Yanling, ZHENG Kai, QIU Shuang, LI Lu, LIU Laikui. Research on improving the construction of cultivation quality assurance system of postgraduates [J]. Stomatology, 2024, 44(11): 860-863. |
[5] | SHI Yulin, LI Gang, HOU Xiaochong, BAI Shizhu, ZHAO Yimin. Research on the development of digital Stomatology education in China [J]. Stomatology, 2024, 44(1): 1-5. |
[6] | YU Haiyang, ZHANG Na, HE Zijing, FANG Tinglu, HAN Li. The relationship between dentists and dental technicians in the digital age of weak artificial intelligence [J]. Stomatology, 2023, 43(7): 577-583. |
[7] | LI Hanyi, HUANG Zhenzhen, ZHU Ziyou, ZHANG Han, SUN Yunyun, ZHU Xianchun. Research progress of calcium fluoride nanocomposites in stomatology [J]. Stomatology, 2023, 43(6): 567-572. |
[8] | ZHOU Huajun,DING Yude,YANG Fan. Progress of research on chitosan-based microspheres in oral tissue lesions [J]. Stomatology, 2023, 43(1): 92-96. |
[9] | FU Mengdie, ZHU Danji, YANG Guoli, JIANG Zhiwei. Application progress of optogenetics technology in stomatology [J]. Stomatology, 2022, 42(4): 354-357. |
[10] | LIANG Yan, XU Zinan, CAI Mingxiang, LIU Xiangning. Applications and research progress of aptamerin stomatology [J]. Stomatology, 2022, 42(4): 358-361. |
[11] | XIE Lizhe, FAN Yubo. Study on the application of deep learning technology in stomatology [J]. Stomatology, 2022, 42(1): 8-13. |
[12] | . Analysis of HIV infection status of patients with oral diseases and WB pattern of HIV positives patients [J]. , 2021, 41(3): 247-251. |
[13] | . Study on the maximum width of the micro slit based on the microsphere diffusion method [J]. , 2019, 39(1): 6-9. |
[14] | . Characterization and antibacterial effects of novel PLGA-HA-Bioglass composite membranes [J]. , 2018, 38(7): 606-611. |
[15] | . [J]. , 2017, 37(10): 901-904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||