Stomatology ›› 2023, Vol. 43 ›› Issue (9): 769-774.doi: 10.13591/j.cnki.kqyx.2023.09.001
• Review • Next Articles
XIAO Bolin1,ZHANG Wei1,2,CHEN Gang1,2,3()
Revised:
2023-07-02
Online:
2023-09-28
Published:
2023-09-28
CLC Number:
XIAO Bolin, ZHANG Wei, CHEN Gang. Extracellular vesicles and oral tumor immunity[J]. Stomatology, 2023, 43(9): 769-774.
[1] | Muzio LL, Ballini A, Cantore S, et al. Overview of Candida albicans and human papillomavirus (HPV) infection agents and their biomolecular mechanisms in promoting oral cancer in pediatric patients[J]. Biomed Res Int, 2021, 2021: 7312611. |
[2] |
Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade[J]. Cell, 2022, 185(3):576.
doi: 10.1016/j.cell.2022.01.008 pmid: 35120665 |
[3] |
Ferris RL, Licitra L. PD-1 immunotherapy for recurrent or metastatic HNSCC[J]. Lancet, 2019, 394(10212):1882-1884.
doi: S0140-6736(19)32539-5 pmid: 31679948 |
[4] |
Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer[J]. Cell, 2023, 186(8):1610-1626.
doi: 10.1016/j.cell.2023.03.010 pmid: 37059067 |
[5] |
Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718):382-386.
doi: 10.1038/s41586-018-0392-8 |
[6] |
van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4):213-228.
doi: 10.1038/nrm.2017.125 |
[7] |
Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4):373-383.
doi: 10.1083/jcb.201211138 pmid: 23420871 |
[8] |
Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway[J]. Dev Cell, 2011, 21(1):77-91.
doi: 10.1016/j.devcel.2011.05.015 pmid: 21763610 |
[9] |
Stenmark H. Rab GTPases as coordinators of vesicle traffic[J]. Nat Rev Mol Cell Biol, 2009, 10(8):513-525.
doi: 10.1038/nrm2728 |
[10] |
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018):A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750.
doi: 10.1080/20013078.2018.1535750 |
[11] |
Dżaman K, Czerwaty K. Extracellular vesicle-based drug delivery systems for head and neck squamous cell carcinoma: A systematic review[J]. Pharmaceutics, 2023, 15(5):1327.
doi: 10.3390/pharmaceutics15051327 |
[12] |
Ludwig S, Sharma P, Theodoraki MN, et al. Molecular and functional profiles of exosomes from HPV(+) and HPV (-) head and neck cancer cell lines[J]. Front Oncol, 2018, 8: 445.
doi: 10.3389/fonc.2018.00445 pmid: 30370252 |
[13] |
Muller L, Mitsuhashi M, Simms P, et al. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets[J]. Sci Rep, 2016, 6: 20254.
doi: 10.1038/srep20254 pmid: 26842680 |
[14] |
Theodoraki MN, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018, 24(4):896-905.
doi: 10.1158/1078-0432.CCR-17-2664 |
[15] |
Hadavand M, Hasni S. Exosomal biomarkers in oral diseases[J]. Oral Dis, 2019, 25(1):10-15.
doi: 10.1111/odi.12878 pmid: 29688608 |
[16] |
Maybruck BT, Pfannenstiel LW, Diaz-Montero M, et al. Tumor-derived exosomes induce CD8+ T cell suppressors[J]. J Immunother Cancer, 2017, 5(1):65.
doi: 10.1186/s40425-017-0269-7 pmid: 28806909 |
[17] |
Xiao BL, Wang XL, Xia HF, et al. HRS regulates small extracellular vesicle PD-L1 secretion and is associated with anti-PD-1 treatment efficacy[J]. Cancer Immunol Res, 2023, 11(2):228-240.
doi: 10.1158/2326-6066.CIR-22-0277 |
[18] |
Bellmunt ÀM, López-Puerto L, Lorente J, et al. Involvement of extracellular vesicles in the macrophage-tumor cell communication in head and neck squamous cell carcinoma[J]. PLoS One, 2019, 14(11):e0224710.
doi: 10.1371/journal.pone.0224710 |
[19] |
Xiao M, Zhang JJ, Chen WJ, et al. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1):143.
doi: 10.1186/s13046-018-0815-2 pmid: 29986759 |
[20] |
Tong FJ, Mao XH, Zhang SW, et al. HPV+ HNSCC-derived exosomal miR-9 induces macrophage M1 polarization and increases tumor radiosensitivity[J]. Cancer Lett, 2020, 478: 34-44.
doi: 10.1016/j.canlet.2020.02.037 |
[21] |
Wang YN, Qin X, Zhu XQ, et al. Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway[J]. Oral Oncol, 2018, 76:34-41.
doi: 10.1016/j.oraloncology.2017.11.024 |
[22] |
Ludwig S, Floros T, Theodoraki MN, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16):4843-4854.
doi: 10.1158/1078-0432.CCR-16-2819 pmid: 28400428 |
[23] |
Asadirad A, Hashemi SM, Baghaei K, et al. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155[J]. Life Sci, 2019, 219:152-162.
doi: S0024-3205(19)30005-0 pmid: 30625290 |
[24] |
Zhao ZJ, Zhang HY, Zeng Q, et al. Exosomes from 5-aminolevulinic acid photodynamic therapy-treated squamous carcinoma cells promote dendritic cell maturation[J]. Photodiagnosis Photodyn Ther, 2020, 30: 101746.
doi: 10.1016/j.pdpdt.2020.101746 |
[25] |
Li L, Cao BR, Liang XH, et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes[J]. Oncogene, 2019, 38(15):2830-2843.
doi: 10.1038/s41388-018-0627-z |
[26] | Schroeder JC, Puntigam L, Hofmann L, et al. Circulating exosomes inhibit B cell proliferation and activity[J]. Cancers(Basel), 2020, 12(8):2110. |
[27] |
Hoshino A, Kim HS, Bojmar L, et al. Extracellular vesicle and particle biomarkers define multiple human cancers[J]. Cell, 2020, 182(4):1044-1061.e18.
doi: S0092-8674(20)30874-6 pmid: 32795414 |
[28] |
Theodoraki MN, Hoffmann TK, Whiteside TL. Separation of plasma-derived exosomes into CD3(+) and CD3(-)fractions allows for association of immune cell and tumour cell markers with disease activity in HNSCC patients[J]. Clin Exp Immunol, 2018, 192(3):271-283.
doi: 10.1111/cei.13113 pmid: 29431869 |
[29] |
Li Y, Chen ZK, Duan X, et al. Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer[J]. Exp Mol Med, 2022, 54(9):1379-1389.
doi: 10.1038/s12276-022-00856-3 pmid: 36117219 |
[30] |
Liu T, Chen G, Sun DW, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin, 2017, 49(9):808-816.
doi: 10.1093/abbs/gmx078 |
[31] |
Li RW, Zhou YF, Zhang MM, et al. Oral squamous cell carcinoma-derived EVs promote tumor progression by regulating inflammatory cytokines and the IL-17A-induced signaling pathway[J]. Int Immunopharmacol, 2023, 118: 110094.
doi: 10.1016/j.intimp.2023.110094 |
[32] |
Orme JJ, Enninga EAL, Lucien-Matteoni F, et al. Therapeutic plasma exchange clears circulating soluble PD-L1 and PD-L1-positive extracellular vesicles[J]. J Immunother Cancer, 2020, 8(2):e001113.
doi: 10.1136/jitc-2020-001113 |
[33] |
Shin S, Ko H, Kim CH, et al. Curvature-sensing peptide inhibits tumour-derived exosomes for enhanced cancer immunotherapy[J]. Nat Mater, 2023, 22(5):656-665.
doi: 10.1038/s41563-023-01515-2 pmid: 36959501 |
[34] |
Wu PP, Zhang B, Ocansey DKW, et al. Extracellular vesicles: A bright star of nanomedicine[J]. Biomaterials, 2021, 269: 120467.
doi: 10.1016/j.biomaterials.2020.120467 |
[35] |
Yang TZ, Martin P, Fogarty B, et al. Exosome delivered antican-cer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio[J]. Pharm Res, 2015, 32(6):2003-2014.
doi: 10.1007/s11095-014-1593-y |
[36] |
Wang CH, Chen L, Huang YY, et al. Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells[J]. Oncol Lett, 2019, 17(2):1953-1961.
doi: 10.3892/ol.2018.9752 pmid: 30675260 |
[37] |
Kase Y, Uzawa K, Wagai S, et al. Engineered exosomes deliver-ing specific tumor-suppressive RNAi attenuate oral cancer progression[J]. Sci Rep, 2021, 11(1):5897.
doi: 10.1038/s41598-021-85242-1 |
[38] |
Wu M, Chen ZK, Xie QH, et al. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification[J]. Biosens Bioelectron, 2021, 171: 112733.
doi: 10.1016/j.bios.2020.112733 |
[39] | Dong HY, Xie QH, Pang DW, et al. Precise selection of aptamers targeting PD-L1 positive small extracellular vesicles on magnetic chips[J]. Chem Commun(Camb), 2021, 57(29):3555-3558. |
[40] | Xu R, Yu ZL, Liu XC, et al. Aptamer-assisted traceless isolation of PD-L1-positive small extracellular vesicles for dissecting their subpopulation signature and function[J]. Anal Chem, 2023, 95(2):1016-1026. |
[41] |
Yu ZL, Liu XC, Wu M, et al. Untouched isolation enables targe-ted functional analysis of tumour-cell-derived extracellular vesicles from tumour tissues[J]. J Extracell Vesicles, 2022, 11(4):e12214.
doi: 10.1002/jev2.v11.4 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||