Stomatology ›› 2024, Vol. 44 ›› Issue (2): 126-129.doi: 10.13591/j.cnki.kqyx.2024.02.009
• Summary • Previous Articles Next Articles
ZHAO Mingyu,SHI Binmian,XIE Xudong,XU Chunmei(),WANG Jun(
)
Received:
2023-06-29
Online:
2024-02-28
Published:
2024-02-04
CLC Number:
ZHAO Mingyu, SHI Binmian, XIE Xudong, XU Chunmei, WANG Jun. Research progress of luteolin in the prevention and treatment for periodontitis[J]. Stomatology, 2024, 44(2): 126-129.
[1] |
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
doi: 10.1038/nrdp.2017.38 pmid: 28805207 |
[2] |
Kwon T, Lamster IB, Levin L. Current concepts in the management of periodontitis[J]. Int Dent J, 2021, 71(6):462-476.
doi: 10.1111/idj.12630 pmid: 34839889 |
[3] |
Golub LM, Lee HM. Periodontal therapeutics: Current host-modulation agents and future directions[J]. Periodontol 2000, 2020, 82(1):186-204.
doi: 10.1111/prd.v82.1 |
[4] |
Preshaw PM. Host modulation therapy with anti-inflammatory agents[J]. Periodontol 2000, 2018, 76(1):131-149.
doi: 10.1111/prd.12148 pmid: 29193331 |
[5] |
Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery[J]. Int J Mol Sci, 2018, 19(6):1578.
doi: 10.3390/ijms19061578 |
[6] |
Jang SW, Cho CH, Jung YS, et al. Enzymatic synthesis of α-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis[J]. PLoS One, 2018, 13(11):e0207466.
doi: 10.1371/journal.pone.0207466 |
[7] |
Casili G, Ardizzone A, Lanza M, et al. Treatment with luteolin improves lipopolysaccharide-induced periodontal diseases in rats[J]. Biomedicines, 2020, 8(10):442.
doi: 10.3390/biomedicines8100442 |
[8] | Theoharides TC. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin[J]. Bio Factors, 2020, 46(3):306-308. |
[9] |
Zheng YZ, Chen DF, Deng G, et al. The surrounding environments on the structure and antioxidative activity of luteolin[J]. J Mol Model, 2018, 24(7):149.
doi: 10.1007/s00894-018-3680-1 |
[10] |
González-Alamilla EN, Gonzalez-Cortazar M, Valladares-Carranza B, et al. Chemical constituents of Salix babylonica L. and their antibacterial activity against gram-positive and gram-negative animal bacteria[J]. Molecules, 2019, 24(16):2992.
doi: 10.3390/molecules24162992 |
[11] |
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies[J]. J Ethnopharmacol, 2018, 225: 342-358.
doi: S0378-8741(17)33457-8 pmid: 29801717 |
[12] |
Li L, Luo W, Qian YY, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses[J]. Phytomedicine, 2019, 59: 152774.
doi: 10.1016/j.phymed.2018.11.034 |
[13] |
Ali F, Siddique YH. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming alzheimer’s disease[J]. CNS Neurol Disord Drug Targets, 2019, 18(5):352-365.
doi: 10.2174/1871527318666190319141835 |
[14] |
Lin Y, Liu PG, Liang WQ, et al. Luteolin-4'-O-glucoside and its aglycone, two major flavones of Gnaphalium affine D. Don, resist hyperuricemia and acute gouty arthritis activity in animal models[J]. Phytomedicine, 2018, 41: 54-61.
doi: S0944-7113(18)30029-1 pmid: 29519319 |
[15] |
Ahmed S, Khan H, Fratantonio D, et al. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives[J]. Phytomedicine, 2019, 59: 152883.
doi: 10.1016/j.phymed.2019.152883 |
[16] |
Ambasta RK, Gupta R, Kumar D, et al. Can luteolin be a therapeutic molecule for both colon cancer and diabetes?[J]. Brief Funct Genomics, 2018, 18(4):230-239.
doi: 10.1093/bfgp/ely036 pmid: 30462152 |
[17] |
Imran M, Rauf A, Abu-Izneid T, et al. Luteolin, a flavonoid, as an anticancer agent: A review[J]. Biomed Pharmacother, 2019, 112: 108612.
doi: 10.1016/j.biopha.2019.108612 |
[18] |
Ramadan DE, Hariyani N, Indrawati R, et al. Cytokines and chemokines in periodontitis[J]. Eur J Dent, 2020, 14(3):483-495.
doi: 10.1055/s-0040-1712718 pmid: 32575137 |
[19] |
Könönen E, Gursoy M, Gursoy UK. Periodontitis: A multifaceted disease of tooth-supporting tissues[J]. J Clin Med, 2019, 8(8):1135.
doi: 10.3390/jcm8081135 |
[20] |
Boelen GJ, Boute L, d'Hoop J, et al. Matrix metalloproteinases and inhibitors in dentistry[J]. Clin Oral Investig, 2019, 23(7):2823-2835.
doi: 10.1007/s00784-019-02915-y |
[21] |
Balci Yuce H, Toker H, Yildirim A, et al. The effect of luteolin in prevention of periodontal disease in Wistar rats[J]. J Periodontol, 2019, 90(12):1481-1489.
doi: 10.1002/JPER.18-0584 pmid: 31115905 |
[22] |
Kurgan S, Kantarci A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis[J]. Periodontol 2000, 2018, 76(1):51-67.
doi: 10.1111/prd.2018.76.issue-1 |
[23] |
Gutiérrez-Venegas G, Jiménez-Estrada M, Maldonado S. The effect of flavonoids on transduction mechanisms in lipopolysaccharide-treated human gingival fibroblasts[J]. Int Immunopharmacol, 2007, 7(9):1199-1210.
doi: 10.1016/j.intimp.2007.05.004 pmid: 17630199 |
[24] |
Gutiérrez-Venegas G, Contreras-Sánchez A. Luteolin and fisetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in human gingival fibroblasts[J]. Mol Biol Rep, 2013, 40(1):477-485.
doi: 10.1007/s11033-012-2083-0 pmid: 23054013 |
[25] |
Gutiérrez-Venegas G, Luna OA, Arreguín-Cano JA, et al. Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts[J]. Cell Mol Biol Lett, 2014, 19(1):126-139.
doi: 10.2478/s11658-014-0186-4 pmid: 24569980 |
[26] |
Mathew G, Unnikrishnan MK. Multi-target drugs to address multiple checkpoints in complex inflammatory pathologies: Evolutionary cues for novel first-in-class anti-inflammatory drug candidates: A reviewer’s perspective[J]. Inflamm Res, 2015, 64(10):747-752.
doi: 10.1007/s00011-015-0851-8 |
[27] |
Onishi S, Tebayashi S, Hikichi Y, et al. Inhibitory effects of luteolin and its derivatives on osteoclast differentiation and differences in luteolin production by Capsicum annuum varieties[J]. Biosci Biotechnol Biochem, 2021, 85(11):2224-2231.
doi: 10.1093/bbb/zbab149 |
[28] |
López Roldán A, García Giménez JL, Alpiste Illueca F. Impact of periodontal treatment on the RANKL/OPG ratio in crevicular fluid[J]. PLoS One, 2020, 15(1):e0227757.
doi: 10.1371/journal.pone.0227757 |
[29] |
Kim TH, Jung JW, Ha BG, et al. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss[J]. J Nutr Biochem, 2011, 22(1):8-15.
doi: 10.1016/j.jnutbio.2009.11.002 |
[30] |
Song FM, Wei CM, Zhou L, et al. Luteoloside prevents lipopolysaccharide-induced osteolysis and suppresses RANKL-induced osteoclastogenesis through attenuating RANKL signaling cascades[J]. J Cell Physiol, 2018, 233(2):1723-1735.
doi: 10.1002/jcp.26084 pmid: 28681916 |
[31] |
Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases[J]. Inflammopharmacol, 2007, 15(6):252-259.
doi: 10.1007/s10787-007-0013-x |
[32] |
Zhang J, Ding C, Meng XF, et al. Nitric oxide modulates the responses of osteoclast formation to static magnetic fields[J]. Electromagn Biol Med, 2018, 37(1):23-34.
doi: 10.1080/15368378.2017.1414057 pmid: 29235883 |
[33] |
Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Rita Arroyo-Cruz S, et al. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts[J]. Eur J Pharmacol, 2006, 541(1/2):95-105.
doi: 10.1016/j.ejphar.2006.03.069 |
[34] |
Agidigbi TS, Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases[J]. Int J Mol Sci, 2019, 20(14):3576.
doi: 10.3390/ijms20143576 |
[35] |
Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: Regenerative potency in periodontium[J]. Stem Cells Dev, 2019, 28(15):974-985.
doi: 10.1089/scd.2019.0031 pmid: 31215350 |
[36] | 张亚龙, 孙佳瑶, 宗斌, 等. 经典Wnt信号通路与牙周膜干细胞成骨分化[J]. 口腔医学, 2021, 41(10):936-941. |
[37] |
Quan H, Dai XP, Liu MY, et al. Luteolin supports osteogenic differentiation of human periodontal ligament cells[J]. BMC Oral Health, 2019, 19(1):229.
doi: 10.1186/s12903-019-0926-y pmid: 31655580 |
[38] |
Jing Z, Wang CY, Yang QN, et al. Luteolin attenuates glucocorticoid-induced osteoporosis by regulating ERK/Lrp-5/GSK-3β signaling pathway in vivo and in vitro[J]. J Cell Physiol, 2019, 234(4):4472-4490.
doi: 10.1002/jcp.v234.4 |
[39] | Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis[J]. J Immunol Res, 2015: 615486. |
[40] |
Koromili M, Kapourani A, Barmpalexis P. Preparation and evaluation of amorphous solid dispersions for enhancing luteolin’s solubility in simulated saliva[J]. Polymers, 2022, 15(1):169.
doi: 10.3390/polym15010169 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||