Stomatology ›› 2025, Vol. 45 ›› Issue (3): 218-222.doi: 10.13591/j.cnki.kqyx.2025.03.011
• Review • Previous Articles Next Articles
LIU Yuan, YAN Yanhong, JIANG Beizhan()
Received:
2024-06-13
Online:
2025-03-28
Published:
2025-03-18
Contact:
JIANG Beizhan
E-mail:jiangbeizhan@tongji.edu.cn
CLC Number:
LIU Yuan, YAN Yanhong, JIANG Beizhan. Research progress of scaffold materials for dental pulp regeneration[J]. Stomatology, 2025, 45(3): 218-222.
Tab.1
In vitro and in vivo study on APC for dental pulp regeneration"
参考文献 | APC | 结果 |
---|---|---|
Narang等[ | PRF和PRP | 临床研究表明,PRF加速牙髓坏死的未成熟恒牙牙根生长,促进作用优于PRP和血凝块 |
Zhou等[ | PRF | PRF联合血凝块可促进比格犬根尖周愈合,促进牙根发育 |
Nageh等[ | PRF | PRF用于REPs,有助于恢复牙齿感觉 |
Ray等[ | PRF | 病例报告证明PRF促进REPs的临床效果 |
Hong等[ | CGF和PRF | CGF和PRF均能促进SCAP的增殖、迁移和分化 |
Xu等[ | CGF | 在体内外研究中,CGF以剂量依赖的方式促进暴露于LPS的DPSCs的增殖、迁移和分化,并且显示出抗炎作用 |
Jin等[ | CGF | CGF以剂量依赖的方式促进DPSCs的增殖,但高浓度的CGF抑制DPSCs的内皮细胞向分化和成牙本质细胞向分化 |
Tab.2
Research on synthetic biodegradable polymers for dental pulp regeneration"
参考文献 | 种类 | 修饰方法 | 负载细胞 | 结果 |
---|---|---|---|---|
Terranova等[ | PLA和PCL | 单宁酸微粒修饰 | DPSCs | 单宁酸微粒修饰的薄膜支架模拟了ECM,维持细胞活性。将薄膜卷曲为锥形结构促进了细胞迁移。 |
Soares等[ | PLA | 将辛伐他汀和纳米纤维偶联支架 | 牙髓细胞 | 支架材料减轻了局部炎症,诱导DPSCs产生血管化的牙髓组织。 |
Chen等[ | PLGA | 明胶改性支架 | 牙囊干细胞 | 通过电纺排列的PLGA/明胶膜片促进了牙囊干细胞的分化,产生牙髓牙本质复合体样结构。 |
Galler等[ | 比较PEG、SAP、纤维蛋白和胶原 | DPSCs | 与PEG和SAP支架相比,天然材料,尤其是纤维蛋白,在细胞活力和牙髓组织形成方面更具优势。 | |
Demarco等[ | PLA | 模拟牙本质的多孔结构 | DPSCs | 模拟牙本质的形态可以影响DPSCs的行为,并诱导细胞分化产生牙髓组织。 |
Itoh等[ | 聚(N-异丙基丙 烯酰胺) | 热响应的水凝胶支架 | DPSCs | 热响应水凝胶在体内实验形成血管化的牙髓组织。 |
[1] |
Eramo S, Natali A, Pinna R, et al. Dental pulp regenerationvia cell homing[J]. Int Endod J, 2018, 51(4): 405-419.
doi: 10.1111/iej.12868 pmid: 29047120 |
[2] |
Lee C, Song MJ. Failure of regenerative endodontic procedures: Case analysis and subsequent treatment options[J]. J Endod, 2022, 48(9): 1137-1145.
doi: 10.1016/j.joen.2022.06.002 pmid: 35714726 |
[3] | Kobayashi E, Flückiger L, Fujioka-Kobayashi M, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF[J]. Clin Oral Investig, 2016, 20(9): 2353-2360. |
[4] | Arshad S, Tehreem F, Khan MR, et al. Platelet-rich fibrin used in regenerative endodontics and dentistry: Current uses, limitations, and future recommendations for application[J]. Int J Dent, 2021, 2021: 4514598. |
[5] | Zhang J, Wu JK, Lin XY, et al. Platelet-rich fibrin promotes the proliferation and osteo-/odontoblastic differentiation of human dental pulp stem cells[J]. Curr Stem Cell Res Ther, 2023, 18(4): 560-567. |
[6] |
Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, et al. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: A case series[J]. J Endod, 2017, 43(3): 401-408.
doi: S0099-2399(16)30743-9 pmid: 28131412 |
[7] | Simões-Pedro M, Tróia PMBPS, dos Santos NBM, et al. Tensile strength essay comparing three different platelet-rich fibrin membranes (L-PRF, A-PRF, and A-PRF+): A mechanical and structural in vitro evaluation[J]. Polymers, 2022, 14(7): 1392. |
[8] |
Qiao J, An N, Ouyang XY. Quantification of growth factors in different platelet concentrates[J]. Platelets, 2017, 28(8): 774-778.
doi: 10.1080/09537104.2016.1267338 pmid: 28277063 |
[9] | Zhang ML, Jiang F, Zhang XC, et al. The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration[J]. Stem Cells Transl Med, 2017, 6(12): 2126-2134. |
[10] |
Hong S, Li L, Cai W, et al. The potential application of concentrated growth factor in regenerative endodontics[J]. Int Endod J, 2019, 52(5): 646-655.
doi: 10.1111/iej.13045 pmid: 30471228 |
[11] | Tian SB, Wang J, Dong FS, et al. Concentrated growth factor promotes dental pulp cells proliferation and mineralization and facilitates recovery of dental pulp tissue[J]. Med Sci Monit, 2019, 25: 10016-10028. |
[12] | Li ZX, Liu L, Wang L, et al. The effects and potential applications of concentrated growth factor in dentin-pulp complex regeneration[J]. Stem Cell Res Ther, 2021, 12(1): 357. |
[13] | Nivedhitha MS, Jacob B, Ranganath A. Concentrated growth factor: A novel platelet concentrate for revascularization of immature permanent teeth—A report of two cases[J]. Case Rep Dent, 2020, 2020: 1329145. |
[14] | Narang I, Mittal N, Mishra N. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: A clinical study[J]. Contemp Clin Dent, 2015, 6(1): 63-68. |
[15] | Zhou RH, Wang YM, Chen YM, et al. Radiographic, histologic, and biomechanical evaluation of combined application of platelet-rich fibrin with blood clot in regenerative endodontics[J]. J Endod, 2017, 43(12): 2034-2040. |
[16] |
Nageh M, Ahmed GM, El-Baz AA. Assessment of regaining pulp sensibility in mature necrotic teeth using a modified revascularization technique with platelet-rich fibrin: A clinical study[J]. J Endod, 2018, 44(10): 1526-1533.
doi: S0099-2399(18)30441-2 pmid: 30174103 |
[17] |
Ray HLJr, Marcelino J, Braga R, et al. Long-term follow up of revascularization using platelet-rich fibrin[J]. Dent Traumatol, 2016, 32(1): 80-84.
doi: 10.1111/edt.12189 pmid: 26095129 |
[18] |
Hong SB, Chen WT, Jiang BZ. A comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla[J]. J Endod, 2018, 44(6): 977-983.
doi: S0099-2399(18)30168-7 pmid: 29703620 |
[19] | Xu FF, Qiao L, Zhao YM, et al. The potential application of concentrated growth factor in pulp regeneration: An in vitro and in vivo study[J]. Stem Cell Res Ther, 2019, 10(1): 134. |
[20] | Jin RZ, Song GT, Chai JH, et al. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro[J]. J Tissue Eng, 2018, 9: 2041731418817505. |
[21] |
Laschke MW, Später T, Menger MD. Microvascular fragments: More than just natural vascularization units[J]. Trends Biotechnol, 2021, 39(1): 24-33.
doi: 10.1016/j.tibtech.2020.06.001 pmid: 32593437 |
[22] |
Xu X, Liang C, Gao X, et al. Adipose tissue-derived microvascular fragments as vascularization units for dental pulp regeneration[J]. J Endod, 2021, 47(7): 1092-1100.
doi: 10.1016/j.joen.2021.04.012 pmid: 33887305 |
[23] |
Li ZH, Wu ML, Liu SY, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration[J]. Mol Ther, 2022, 30(10): 3193-3208.
doi: 10.1016/j.ymthe.2022.05.006 pmid: 35538661 |
[24] | Zheng JM, Kong YY, Hu XL, et al. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis[J]. Stem Cell Res Ther, 2020, 11(1): 517. |
[25] | Zhang SC, Yang Y, Jia SX, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue[J]. Theranostics, 2020, 10(13): 5914-5931. |
[26] |
Poornejad N, Schaumann LB, Buckmiller EM, et al. The impact of decellularization agents on renal tissue extracellular matrix[J]. J Biomater Appl, 2016, 31(4): 521-533.
pmid: 27312837 |
[27] |
Liang ZL, Li JD, Lin HK, et al. Understanding the multi-functionality and tissue-specificity of decellularized dental pulp matrix hydrogels for endodontic regeneration[J]. Acta Biomater, 2024, 181: 202-221.
doi: 10.1016/j.actbio.2024.04.040 pmid: 38692468 |
[28] | Melling GE, Colombo JS, Avery SJ, et al. Liposomal delivery of demineralized dentin matrix for dental tissue regeneration[J]. Tissue Eng Part A, 2018, 24(13/14): 1057-1065. |
[29] | Guo H, Li B, Wu ML, et al. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279: 121223. |
[30] | Ricard-Blum S. The collagen family[J]. Cold Spring Harb Perspect Biol, 2011, 3(1): a004978. |
[31] | Yang XC, Han GL, Pang X, et al. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo[J]. JBiomedMaterRes A, 2020, 108(12): 2519-2526. |
[32] | Liang C, Liang QQ, Xu X, et al. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: Therapeutic potential for endogenous pulp regeneration[J]. Int J Oral Sci, 2022, 14(1): 38. |
[33] |
Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254-271.
doi: 10.1016/j.biomaterials.2015.08.045 pmid: 26414409 |
[34] | Qian Y, Gong JX, Lu KJ, et al. DLP printed hDPSC-loaded GelMA microsphere regenerates dental pulp and repairs spinal cord[J]. Biomaterials, 2023, 299: 122137. |
[35] |
Zhang RT, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration[J]. Acta Biomater, 2020, 113: 305-316.
doi: S1742-7061(20)30397-4 pmid: 32663663 |
[36] | Zhang HT, Cheng JQ, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine[J]. Mar Drugs, 2021, 19(5): 264. |
[37] |
Liang X, Xie L, Zhang QY, et al. Gelatin methacryloyl-alginate core-shell microcapsules as efficient delivery platforms for prevascularized microtissues in endodontic regeneration[J]. Acta Biomater, 2022, 144: 242-257.
doi: 10.1016/j.actbio.2022.03.045 pmid: 35364321 |
[38] | Chen H, Fu HC, Wu X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cells[J]. Sci Adv, 2020, 6(15): eaay1514. |
[39] | Chrepa V, Austah O, Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (restylane) as injectable scaffold for dental pulp regeneration: An in vitro evaluation[J]. J Endod, 2017, 43(2): 257-262. |
[40] |
Silva CR, Babo PS, Gulino M, et al. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration[J]. Acta Biomater, 2018, 77: 155-171.
doi: S1742-7061(18)30429-X pmid: 30031163 |
[41] |
Ducret M, Montembault A, Josse J, et al. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration[J]. Dent Mater, 2019, 35(4): 523-533.
doi: S0109-5641(18)31091-1 pmid: 30712823 |
[42] |
Pothupitiya JU, Zheng C, Saltzman WM. Synthetic biodegradable polyesters for implantable controlled-release devices[J]. Expert Opin Drug Deliv, 2022, 19(10): 1351-1364.
doi: 10.1080/17425247.2022.2131768 pmid: 36197839 |
[43] |
Terranova L, Louvrier A, Hébraud A, et al. Highly structured 3D electrospun conical scaffold: A tool for dental pulp regeneration[J]. ACS Biomater Sci Eng, 2021, 7(12): 5775-5787.
doi: 10.1021/acsbiomaterials.1c00900 pmid: 34846849 |
[44] |
Soares DG, Zhang ZP, Mohamed F, et al. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment[J]. Acta Biomater, 2018, 68: 190-203.
doi: S1742-7061(17)30803-6 pmid: 29294374 |
[45] |
Chen G, Chen JL, Yang B, et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52: 56-70.
doi: 10.1016/j.biomaterials.2015.02.011 pmid: 25818413 |
[46] | Galler KM, Brandl FP, Kirchhof S, et al. Suitability of different natural and synthetic biomaterials for dental pulp tissue engineering[J]. Tissue Eng Part A, 2018, 24(3/4): 234-244. |
[47] |
Demarco FF, Casagrande L, Zhang ZC, et al. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells[J]. J Endod, 2010, 36(11): 1805-1811.
doi: 10.1016/j.joen.2010.08.031 pmid: 20951292 |
[48] |
Itoh Y, Sasaki JI, Hashimoto M, et al. Pulp regeneration by 3-dimensional dental pulp stem cell constructs[J]. J Dent Res, 2018, 97(10): 1137-1143.
doi: 10.1177/0022034518772260 pmid: 29702010 |
[49] | Jiménez-Aristazábal RF, Carmona JU, Prades M. Changes on the structural architecture and growth factor release, and degradation in equine platelet-rich fibrin clots cultured over time[J]. J Equine Vet Sci, 2019, 82: 102789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||