[1] |
Howe MS, Keys W, Richards D. Long-term(10-year)dental implant survival: A systematic review and sensitivity meta-analysis[J]. J Dent, 2019, 84: 9-21.
|
[2] |
Wada M, Mameno T, Otsuki M, et al. Prevalence and risk indicators for peri-implant diseases: A literature review[J]. Jpn Dent Sci Rev, 2021, 57: 78-84.
|
[3] |
Berglundh T, Armitage G, Araujo MG, et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions[J]. Clin Periodontol, 2018, 45(Suppl 20):S286-S291.
|
[4] |
Bowen WH, Burne RA, Wu H, et al. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments[J]. Trends Microbiol, 2018, 26(3): 229-242.
doi: S0966-842X(17)30213-5
pmid: 29097091
|
[5] |
Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: Extracellular components in structured microbial communities[J]. Trends Microbiol, 2020, 28(8): 668-681.
doi: S0966-842X(20)30087-1
pmid: 32663461
|
[6] |
Rosier BT, Marsh PD, Mira A. Resilience of the oral microbiota in health: Mechanisms that prevent dysbiosis[J]. J Dent Res, 2018, 97(4): 371-380.
doi: 10.1177/0022034517742139
pmid: 29195050
|
[7] |
Souza JGS, Bertolini MM, Costa RC, et al. Targeting implant-associated infections: Titanium surface loaded with antimicrobial[J]. iScience, 2021, 24(1): 102008.
|
[8] |
Kreve S, Reis ACD. Bacterial adhesion to biomaterials: What regulates this attachment?A review[J]. Jpn Dent Sci Rev, 2021, 57: 85-96.
|
[9] |
Alves CH, Russi KL, Rocha NC, et al. Host-microbiome interactions regarding peri-implantitis and dental implant loss[J]. J Transl Med, 2022, 20(1): 425.
doi: 10.1186/s12967-022-03636-9
pmid: 36138430
|
[10] |
Shrivastava D, Natoli V, Srivastava KC, et al. Novel approach to dental biofilm management through guided biofilm therapy(GBT): A review[J]. Microorganisms, 2021, 9(9): 1966.
|
[11] |
Costa RC, Nagay BE, Dini C, et al. The race for the optimal antimicrobial surface: Perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants[J]. Adv Colloid Interface Sci, 2023, 311: 102805.
|
[12] |
Siddiqui DA, Fidai AB, Natarajan SG, et al. Succession of oral bacterial colonizers on dental implant materials: An biofilm model[J]. Dent Mater, 2022, 38(2): 384-396.
|
[13] |
Bermejo P, Sánchez MC, Llama-Palacios A, et al. Topographic characterization of multispecies biofilms growing on dental implant surfaces: An model[J]. Clin Oral Implants Res, 2019, 30(3): 229-241.
|
[14] |
Ghimire A, Song J. Anti-periprosthetic infection strategies: From implant surface topographical engineering to smart drug-releasing coatings[J]. ACS Appl Mater Interfaces, 2021, 13(18): 20921-20937.
|
[15] |
Bermejo P, Sánchez MC, Llama-Palacios A, et al. Biofilm formation on dental implants with different surface micro-topography: An study[J]. Clin Oral Implants Res, 2019, 30(8): 725-734.
|
[16] |
Safaei M, Mohammadi H, Beddu S, et al. Surface topography steer soft tissue response and antibacterial function at the transmucosal region of titanium implant[J]. Int J Nanomedicine, 2024, 19: 4835-4856.
|
[17] |
Chopra D, Guo TQ, Jayasree A, et al. Bioinspired, bioactive, and bactericidal: Anodized nanotextured dental implants[J]. Adv Funct Mater, 2024, 34(30): 2314031.
|
[18] |
Gao Q, Feng T, Huang DN, et al. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes[J]. Biomater Sci, 2020, 8(1): 278-289.
|
[19] |
Villegas M, Bayat F, Kramer T, et al. Emerging strategies to prevent bacterial infections on titanium-based implants[J]. Small, 2024, 20(46): e2404351.
|
[20] |
Guo LL, Cheng YF, Ren X, et al. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface[J]. Colloids Surf B Biointerfaces, 2021, 200: 111592.
|
[21] |
Zuo KQ, Wang LL, Wang ZH, et al. Zinc-doping induces evolution of biocompatible strontium-calcium-phosphate conversion coating on titanium to improve antibacterial property[J]. ACS Appl Mater Interfaces, 2022, 14(6): 7690-7705.
|
[22] |
Tardelli JDC, Bagnato VS, Reis ACD. Bacterial adhesion strength on titanium surfaces quantified by atomic force microscopy: A systematic review[J]. Antibiotics(Basel), 2023, 12(6): 994.
|
[23] |
Gittens RA, Scheideler L, Rupp F, et al. A review on the wettability of dental implant surfaces Ⅱ: Biological and clinical aspects[J]. Acta Biomater, 2014, 10(7): 2907-2918.
|
[24] |
Alam F, Balani K. Adhesion force of Staphylococcus aureus on various biomaterial surfaces[J]. J Mech Behav Biomed Mater, 2017, 65: 872-880.
|
[25] |
Chopra D, Jayasree A, Guo TQ, et al. Advancing dental implants: Bioactive and therapeutic modifications of zirconia[J]. Bioact Mater, 2022, 13: 161-178.
doi: 10.1016/j.bioactmat.2021.10.010
pmid: 35224299
|
[26] |
Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, et al. biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017, 88(3): 298-307.
doi: 10.1902/jop.2016.160245
pmid: 27712464
|
[27] |
de Freitas AR, Silva TSO, Ribeiro RF, et al. Oral bacterial colonization on dental implants restored with titanium or zirconia abutments: 6-month follow-up[J]. Clin Oral Investig, 2018, 22(6): 2335-2343.
|
[28] |
Santhosh Kumar S, Hiremath SS, Ramachandran B, et al. Effect of surface finish on wettability and bacterial adhesion of micromachined biomaterials[J]. Biotribology, 2019, 18: 100095.
|
[29] |
Costa RC, Nagay BE, Bertolini M, et al. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections[J]. Adv Colloid Interface Sci, 2021, 298: 102551.
|
[30] |
Kheder W, Al Kawas S, Khalaf K, et al. Impact of tribocorrosion and titanium particles release on dental implant complications: A narrative review[J]. Jpn Dent Sci Rev, 2021, 57: 182-189.
|
[31] |
Daubert DM, Weinstein BF. Biofilm as a risk factor in implant treatment[J]. Periodontol 2000, 2019, 81(1): 29-40.
doi: 10.1111/prd.12280
pmid: 31407437
|
[32] |
Kotsakis GA, Olmedo DG. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype[J]. Periodontol 2000, 2021, 86(1): 231-240.
doi: 10.1111/prd.12372
pmid: 33690947
|
[33] |
Safioti LM, Kotsakis GA, Pozhitkov AE, et al. Increased levels of dissolved titanium are associated with peri-implantitis: A cross-sectional study[J]. J Periodontol, 2017, 88(5): 436-442.
|
[34] |
Daubert D, Pozhitkov A, McLean J, et al. Titanium as a modifier of the peri-implant microbiome structure[J]. Clin Implant Dent Relat Res, 2018, 20(6): 945-953.
|
[35] |
Ng E, Tay JRH, Mattheos N, et al. A mapping review of the pathogenesis of peri-implantitis: The biofilm-mediated inflammation and bone dysregulation(BIND)hypothesis[J]. Cells, 2024, 13(4): 315.
|
[36] |
Rahnama-Hezavah M, Mertowska P, Mertowski S, et al. How can imbalance in oral microbiota and immune response lead to dental implant problems?[J]. Int J Mol Sci, 2023, 24(24): 17620.
|
[37] |
Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-like receptorsTLRs, NOD-like receptors(NLRs), and RIG-I-like receptors(RLRs)in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases[J]. Int J Mol Sci, 2021, 22(24): 13397.
|
[38] |
Guo T, Gulati K, Arora H, et al. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants[J]. Dent Mater, 2021, 37(5): 816-831.
doi: 10.1016/j.dental.2021.02.005
pmid: 33676764
|