| [1] |
Sanz M, Marco Del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases: Consensus report[J]. J Clin Periodontol, 2020, 47(3): 268-288.
doi: 10.1111/jcpe.13189
pmid: 32011025
|
| [2] |
Slots J. Focal infection of periodontal origin[J]. Periodontol 2000, 2019, 79(1): 233-235.
doi: 10.1111/prd.12258
pmid: 30892771
|
| [3] |
Grande MA, Belstrøm D, Damgaard C, et al. Complement split product C3c in saliva as biomarker for periodontitis and response to periodontal treatment[J]. J Periodontal Res, 2021, 56(1): 27-33.
doi: 10.1111/jre.v56.1
|
| [4] |
Pan WY, Wang QX, Chen QM. The cytokine network involved in the host immune response to periodontitis[J]. Int J Oral Sci, 2019, 11(3): 30.
doi: 10.1038/s41368-019-0064-z
pmid: 31685798
|
| [5] |
Slots J. Life-threatening pathogens in severe/progressive periodontitis: Focal infection risk, future periodontal practice, role of the Periodontology 2000[J]. Periodontol 2000, 2020, 84(1): 215-216.
doi: 10.1111/prd.12375
pmid: 32844419
|
| [6] |
Di Stefano M, Polizzi A, Santonocito S, et al. Impact of oral microbiome in periodontal health and periodontitis: A critical review on prevention and treatment[J]. Int J Mol Sci, 2022, 23(9): 5142.
doi: 10.3390/ijms23095142
|
| [7] |
Tommasi F, Thomas PJ, Lyons DM, et al. Evaluation of rare earth element-associated hormetic effects in candidate fertilizers and livestock feed additives[J]. Biol Trace Elem Res, 2023, 201(5): 2573-2581.
doi: 10.1007/s12011-022-03331-2
|
| [8] |
Benedetto A, Bocca C, Brizio P, et al. Effects of the rare elements lanthanum and cerium on the growth of colorectal and hepatic cancer cell lines[J]. Toxicol In Vitro, 2018, 46: 9-18.
|
| [9] |
Todorov L, Kostova I, Traykova M. Lanthanum, gallium and their impact on oxidative stress[J]. Curr Med Chem, 2019, 26(22): 4280-4295.
doi: 10.2174/0929867326666190104165311
pmid: 31438825
|
| [10] |
Li RJ, Zhou YL, Liu W, et al. Rare earth element lanthanum protects against atherosclerosis induced by high-fat diet down-regulating MAPK and NF-κB pathways[J]. Ecotoxicol Environ Saf, 2021, 207: 111195.
doi: 10.1016/j.ecoenv.2020.111195
|
| [11] |
Yefimova S, Klochkov V, Kavok N, et al. Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes[J]. J Biomed Mater Res B Appl Biomater, 2023, 111(4): 872-880.
doi: 10.1002/jbm.b.v111.4
|
| [12] |
Nadeem M, Khan R, Afridi K, et al. Green synthesis of cerium oxide nanoparticles(CeO2 NPs)and their antimicrobial applications: A review[J]. Int J Nanomedicine, 2020, 15: 5951-5961.
doi: 10.2147/IJN.S255784
|
| [13] |
Bhatt L, Chen L, Guo JL, et al. Hydrolyzed Ce(Ⅳ)salts limit sucrose-dependent biofilm formation by Streptococcus mutans[J]. J Inorg Biochem, 2020, 206: 110997.
doi: 10.1016/j.jinorgbio.2020.110997
|
| [14] |
Zhou Q, Dong XL, Xiong YX, et al. Multi-responsive lanthanide-based hydrogel with encryption, naked eye sensing, shape memory, self-healing, and antibacterial activity[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28539-28549.
doi: 10.1021/acsami.0c06674
|
| [15] |
Li C, Sun YR, Li XP, et al. Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity[J]. J Nanobiotechnology, 2019, 17(1): 54.
doi: 10.1186/s12951-019-0487-x
|
| [16] |
Xu WK, Wei K, Lin ZF, et al. Storage and release of rare earth elements in microsphere-based scaffolds for enhancing osteogenesis[J]. Sci Rep, 2022, 12(1): 6383.
doi: 10.1038/s41598-022-10347-0
pmid: 35430599
|
| [17] |
Chu M, Sun ZY, Fan ZH, et al. Bi-directional regulation functions of lanthanum-substituted layered double hydroxide nanohybrid scaffolds via activating osteogenesis and inhibiting osteoclastogenesis for osteoporotic bone regeneration[J]. Theranostics, 2021, 11(14): 6717-6734.
doi: 10.7150/thno.56607
|
| [18] |
Liao F, Peng XY, Yang F, et al. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109999.
doi: 10.1016/j.msec.2019.109999
|
| [19] |
Yuan K, Mei JT, Shao DD, et al. Cerium oxide nanoparticles regulate osteoclast differentiation bidirectionally by modulating the cellular production of reactive oxygen species[J]. Int J Nanomedicine, 2020, 15: 6355-6372.
doi: 10.2147/IJN.S257741
|
| [20] |
Xie YX, Xiao ST, Huang LY, et al. Cascade and ultrafast artificial antioxidases alleviate inflammation and bone resorption in periodontitis[J]. ACS Nano, 2023, 17(15): 15097-15112.
doi: 10.1021/acsnano.3c04328
|
| [21] |
Xiong LP, Bao H, Li SZ, et al. Cerium oxide nanoparticles protect against chondrocytes and cartilage explants from oxidative stressNrf2/HO-1 pathway in temporomandibular joint osteoarthritis[J]. Front Bioeng Biotechnol, 2023, 11: 1076240.
doi: 10.3389/fbioe.2023.1076240
|
| [22] |
Gao Y, Liu SH, Zeng XC, et al. Reduction of reactive oxygen species accumulation using gadolinium-doped ceria for the alleviation of atherosclerosis[J]. ACS Appl Mater Interfaces, 2023, 15(8): 10414-10425.
doi: 10.1021/acsami.2c20492
|
| [23] |
Li YM, Li YM, Bai YD, et al. High catalytic efficiency from Er3+-doped CeO2-xnanoprobes for in vivo acute oxidative damage and inflammation therapy[J]. J Mater Chem B, 2020, 8(37): 8634-8643.
doi: 10.1039/D0TB01463J
|
| [24] |
Khurana A, Anchi P, Allawadhi P, et al. Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by ceruleinhyperstimulation[J]. Nanomedicine, 2019, 18: 54-65.
doi: S1549-9634(19)30049-8
pmid: 30851439
|
| [25] |
Liu J, Ruan JP, Weir MD, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells[J]. Cells, 2019, 8(6): 537.
doi: 10.3390/cells8060537
|
| [26] |
Ramenzoni LL, Weber FE, Attin T, et al. Cerium chloride application promotes wound healing and cell proliferation in human foreskin fibroblasts[J]. Materials(Basel), 2017, 10(6): 573.
|
| [27] |
Yu YJ, Zhao S, Gu DA, et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NF-κB pathway[J]. Nanoscale, 2022, 14(7): 2628-2637.
doi: 10.1039/D1NR06043K
|
| [28] |
Li X, Qi ML, Li CY, et al. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis[J]. J Mater Chem B, 2019, 7(44): 6955-6971.
doi: 10.1039/c9tb01743g
pmid: 31617555
|
| [29] |
Schwarz F, Ramanauskaite A. It is all about peri-implant tissue health[J]. Periodontol 2000, 2022, 88(1): 9-12.
doi: 10.1111/prd.12407
pmid: 35103327
|
| [30] |
Salvi GE, Stähli A, Imber JC, et al. Physiopathology of peri-implant diseases[J]. Clin Implant Dent Relat Res, 2023, 25(4): 629-639.
doi: 10.1111/cid.v25.4
|
| [31] |
Li X, Qi ML, Sun XL, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities[J]. Acta Biomater, 2019, 94: 627-643.
doi: 10.1016/j.actbio.2019.06.023
|
| [32] |
Hu WJ, Yie KHR, Liu CX, et al. Improving the valence self-reversible conversion of cerium nanoparticles on titanium implants by lanthanum doping to enhance ROS elimination and osteogenesis[J]. Dent Mater, 2022, 38(8): 1362-1375.
doi: 10.1016/j.dental.2022.06.014
pmid: 35752471
|
| [33] |
Zhang CB, Geng NB, Dai YB, et al. Accumulation and distribution characteristics of rare earth elements(REEs)in the naturally grown marigold(Tageteserecta L.) from the soil[J]. Environ Sci Pollut Res Int, 2023, 30(16): 46355-46367.
doi: 10.1007/s11356-023-25508-5
|
| [34] |
Adeel M, Shakoor N, Hussain T, et al. Bio-interaction of nano and bulk lanthanum and ytterbium oxides in soil system: Biochemical, genetic, and histopathological effects on Eiseniafetida[J]. J Hazard Mater, 2021, 415: 125574.
doi: 10.1016/j.jhazmat.2021.125574
|
| [35] |
Prakash V, Peralta-Videa J, Tripathi DK, et al. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum[J]. Ecotoxicol Environ Saf, 2021, 221: 112403.
doi: 10.1016/j.ecoenv.2021.112403
|
| [36] |
Liu JX, Wang LP, Ge LD, et al. Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus[J]. Food Chem Toxicol, 2022, 161: 112831.
doi: 10.1016/j.fct.2022.112831
|