Stomatology ›› 2023, Vol. 43 ›› Issue (8): 752-756.doi: 10.13591/j.cnki.kqyx.2023.08.016
• Summary • Previous Articles Next Articles
JIANG Zhen,HAN Xue,JIANG Beizhan()
Revised:
2022-11-05
Online:
2023-08-28
Published:
2023-08-23
CLC Number:
JIANG Zhen, HAN Xue, JIANG Beizhan. Research progress of the regulatory mechanisms of dental follicle in bone remodeling during tooth eruption[J]. Stomatology, 2023, 43(8): 752-756.
[1] |
Richman JM. Shedding new light on the mysteries of tooth eruption[J]. Proc Natl Acad Sci USA, 2019, 116(2):353-355.
doi: 10.1073/pnas.1819412116 pmid: 30602459 |
[2] |
Lungová V, Radlanski RJ, Tucker AS, et al. Tooth-bone morphogenesis during postnatal stages of mouse first molar development[J]. J Anat, 2011, 218(6):699-716.
doi: 10.1111/j.1469-7580.2011.01367.x pmid: 21418206 |
[3] |
Park SJ, Bae HS, Cho YS, et al. Apoptosis of the reduced enamel epithelium and its implications for bone resorption during tooth eruption[J]. J Mol Histol, 2013, 44(1):65-73.
doi: 10.1007/s10735-012-9465-4 |
[4] |
Wise GE. Cellular and molecular basis of tooth eruption[J]. Orthod Craniofac Res, 2009, 12(2):67-73.
doi: 10.1111/j.1601-6343.2009.01439.x pmid: 19419449 |
[5] |
Meng MM, Chen YD, Chen XL, et al. IL-1α regulates osteogenesis and osteoclastic activity of dental follicle cells through JNK and p38 MAPK pathways[J]. Stem Cells Dev, 2020, 29(24):1552-1566.
doi: 10.1089/scd.2020.0118 pmid: 33107399 |
[6] |
Liu DW, Wise GE. Expression of endothelial monocyte-activating polypeptide II in the rat dental follicle and its potential role in tooth eruption[J]. Eur J Oral Sci, 2008, 116(4):334-340.
doi: 10.1111/j.1600-0722.2008.00547.x pmid: 18705801 |
[7] |
Wise GE, Yao S, Odgren PR, et al. CSF-1 regulation of osteoclastogenesis for tooth eruption[J]. J Dent Res, 2005, 84(9):837-841.
pmid: 16109994 |
[8] |
Liu DW, Yao SM, Wise GE. Regulation of SFRP-1 expression in the rat dental follicle[J]. Connect Tissue Res, 2012, 53(5):366-372.
doi: 10.3109/03008207.2012.664204 pmid: 22313323 |
[9] |
Liu DW, Wise GE. A DNA microarray analysis of chemokine and receptor genes in the rat dental follicle: Role of secreted frizzled-related protein-1 in osteoclastogenesis[J]. Bone, 2007, 41(2):266-272.
doi: 10.1016/j.bone.2007.04.181 |
[10] |
Yao SM, Liu DW, Pan FH, et al. Effect of vascular endothelial growth factor on RANK gene expression in osteoclast precursors and on osteoclastogenesis[J]. Arch Oral Biol, 2006, 51(7):596-602.
pmid: 16443190 |
[11] |
Castaneda B, Simon Y, Jacques J, et al. Bone resorption control of tooth eruption and root morphogenesis: Involvement of the receptor activator of NF-κB (RANK)[J]. J Cell Physiol, 2011, 226(1):74-85.
doi: 10.1002/jcp.22305 pmid: 20635397 |
[12] |
Lézot F, Chesneau J, Battaglia S, et al. Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies[J]. Bone, 2014, 68: 146-152.
doi: 10.1016/j.bone.2014.08.018 pmid: 25193159 |
[13] |
Lézot F, Chesneau J, Navet B, et al. Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: Mouse strain disparities and synergic effect with zoledronic acid[J]. Bone, 2015, 73: 51-59.
doi: 10.1016/j.bone.2014.12.011 pmid: 25532478 |
[14] |
Zeng L, He H, Sun MJ, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption[J]. Stem Cell Res Ther, 2022, 13(1):486.
doi: 10.1186/s13287-022-03140-3 pmid: 36175952 |
[15] |
Zhang JW, Liao LJ, Li YY, et al. Parathyroid hormone-related peptide (1-34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth development[J]. J Cell Physiol, 2019, 234(7):11900-11911.
doi: 10.1002/jcp.27857 pmid: 30584670 |
[16] |
Cui C, Bi R, Liu W, et al. Role of PTH1R signaling in Prx1+ mesenchymal progenitors during eruption[J]. J Dent Res, 2020, 99(11):1296-1305.
doi: 10.1177/0022034520934732 pmid: 32585127 |
[17] |
Bi RY, Lyu P, Song YM, et al. Function of dental follicle progenitor/stem cells and their potential in regenerative medicine: From mechanisms to applications[J]. Biomolecules, 2021, 11(7):997.
doi: 10.3390/biom11070997 |
[18] |
Meng ZS, Fu N, Guo SL, et al. Heterogeneity affects the differentiation potential of dental follicle stem cells through the TGF-β signaling pathway[J]. Bioengineered, 2021, 12(2):12294-12307.
doi: 10.1080/21655979.2021.2009974 pmid: 34927533 |
[19] |
Um S, Lee JH, Seo BM. TGF-β2 downregulates osteogenesis under inflammatory conditions in dental follicle stem cells[J]. Int J Oral Sci, 2018, 10(3):29.
doi: 10.1038/s41368-018-0028-8 pmid: 30297828 |
[20] |
Li ZZ, Wang HT, Lee GY, et al. Bleomycin: A novel osteogenesis inhibitor of dental follicle cells via a TGF-β1/SMAD7/RUNX2 pathway[J]. Br J Pharmacol, 2021, 178(2):312-327.
doi: 10.1111/bph.v178.2 |
[21] |
Viale-Bouroncle S, Felthaus O, Schmalz G, et al. The transcrip-tion factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells[J]. Stem Cells Dev, 2012, 21(11):1936-1947.
doi: 10.1089/scd.2011.0422 pmid: 22107079 |
[22] |
Morsczeck C. Mechanisms during osteogenic differentiation in human dental follicle cells[J]. Int J Mol Sci, 2022, 23(11):5945.
doi: 10.3390/ijms23115945 |
[23] |
Morsczeck C, Reck A, Beck HC. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells[J]. Mol Cell Biochem, 2017, 428(1/2):79-86.
doi: 10.1007/s11010-016-2918-4 |
[24] |
Pieles O, Reichert TE, Morsczeck C. Protein kinase A is activated during bone morphogenetic protein 2-induced osteogenic differentiation of dental follicle stem cells via endogenous parathyroid hormone-related protein[J]. Arch Oral Biol, 2022, 138: 105409.
doi: 10.1016/j.archoralbio.2022.105409 |
[25] |
Viale-Bouroncle S, Klingelhöffer C, Ettl T, et al. A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs)[J]. Cell Signal, 2015, 27(3):598-605.
doi: 10.1016/j.cellsig.2014.12.008 pmid: 25530217 |
[26] |
Klingelhöffer C, Reck A, Ettl T, et al. The parathyroid hormone-related protein is secreted during the osteogenic differentiation of human dental follicle cells and inhibits the alkaline phosphatase activity and the expression of DLX3[J]. Tissue Cell, 2016, 48(4):334-339.
doi: 10.1016/j.tice.2016.05.007 pmid: 27368119 |
[27] |
Viale-Bouroncle S, Gosau M, Morsczeck C. NOTCH1 signaling regulates the BMP2/DLX-3 directed osteogenic differentiation of dental follicle cells[J]. Biochem Biophys Res Commun, 2014, 443(2):500-504.
doi: 10.1016/j.bbrc.2013.11.120 |
[28] |
Press T, Viale-Bouroncle S, Felthaus O, et al. EGR1 supports the osteogenic differentiation of dental stem cells[J]. Int Endod J, 2015, 48(2):185-192.
doi: 10.1111/iej.12299 pmid: 24749562 |
[29] |
Wise GE, He HZ, Gutierrez DL, et al. Requirement of alveolar bone formation for eruption of rat molars[J]. Eur J Oral Sci, 2011, 119(5):333-338.
doi: 10.1111/j.1600-0722.2011.00854.x pmid: 21896048 |
[30] |
Yao SM, He HZ, Gutierrez DL, et al. Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation[J]. Cells Tissues Organs, 2013, 198(6):438-447.
doi: 10.1159/000360275 pmid: 24732882 |
[31] |
Tang J, Qing MF, Li M, et al. Dexamethasone inhibits BMP7-induced osteogenic differentiation in rat dental follicle cells via the PI3K/AKT/GSK-3β/β-catenin pathway[J]. Int J Med Sci, 2020, 17(17):2663-2672.
doi: 10.7150/ijms.44231 |
[32] |
Li CH, Yang X, He YJ, et al. Bone morphogenetic protein-9 induces osteogenic differentiation of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner[J]. Int J Med Sci, 2012, 9(10):862-871.
doi: 10.7150/ijms.5027 pmid: 23155360 |
[33] |
Silvério KG, Davidson KC, James RG, et al. Wnt/β-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells[J]. J Periodontal Res, 2012, 47(3):309-319.
doi: 10.1111/j.1600-0765.2011.01433.x pmid: 22150562 |
[34] |
Viale-Bouroncle S, Klingelhöffer C, Ettl T, et al. The WNT inhibitor APCDD1 sustains the expression of β-catenin during the osteogenic differentiation of human dental follicle cells[J]. Biochem Biophys Res Commun, 2015, 457(3):314-317.
doi: 10.1016/j.bbrc.2014.12.107 |
[35] |
Chen CC, Zhang JY, Ling JQ, et al. Nkd2 promotes the differentiation of dental follicle stem/progenitor cells into osteoblasts[J]. Int J Mol Med, 2018, 42(5):2403-2414.
doi: 10.3892/ijmm.2018.3822 pmid: 30106129 |
[36] |
Li XY, Chen DC, Jing XQ, et al. DKK1 and TNF-alpha influence osteogenic differentiation of adBMP9-infected-rDFCs[J]. Oral Dis, 2020, 26(2):360-369.
doi: 10.1111/odi.v26.2 |
[37] |
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB[J]. Stem Cell Res Ther, 2021, 12(1):242.
doi: 10.1186/s13287-021-02313-w |
[38] |
Du Y, Ling JQ, Wei X, et al. Wnt/β-catenin signaling participates in cementoblast/osteoblast differentiation of dental follicle cells[J]. Connect Tissue Res, 2012, 53(5):390-397.
doi: 10.3109/03008207.2012.668980 pmid: 22360497 |
[39] |
Xing YY, Yang BB, He Y, et al. Effects of mechanosensitive ion channel Piezo1 on proliferation and osteogenic differentiation of human dental follicle cells[J]. Ann Anat, 2022, 239: 151847.
doi: 10.1016/j.aanat.2021.151847 |
[40] | Ai TT, Zhang JN, Wang XD, et al. DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells[J]. Signal Transduct Target Ther, 2018, 3: 1. |
[41] |
Gopinathan G, Kolokythas A, Luan XH, et al. Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations[J]. Stem Cells Dev, 2013, 22(12):1763-1778.
doi: 10.1089/scd.2012.0711 pmid: 23379639 |
[42] |
Ito K, Tomoki R, Ogura N, et al. microRNA-204 regulates osteogenic induction in dental follicle cells[J]. J Dent Sci, 2020, 15(4):457-465.
doi: 10.1016/j.jds.2019.11.004 pmid: 33505617 |
[43] |
Du Y, Li J, Hou YL, et al. Alteration of circular RNA expression in rat dental follicle cells during osteogenic differentiation[J]. J Cell Biochem, 2019, 120(8):13289-13301.
doi: 10.1002/jcb.28603 pmid: 30916823 |
[44] | Wu LP, Deng LD, Hong H, et al. Comparison of long non-coding RNA expression profiles in human dental follicle cells and human periodontal ligament cells[J]. Mol Med Rep, 2019, 20(2):939-950. |
[45] |
Deng LD, Hong H, Zhang XQ, et al. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway[J]. Biochem Biophys Res Commun, 2018, 503(3):2061-2067.
doi: 10.1016/j.bbrc.2018.07.160 |
[46] |
Chen ZY, Zheng JX, Hong H, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro[J]. J Cell Physiol, 2020, 235(11):8507-8519.
doi: 10.1002/jcp.v235.11 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||