Stomatology ›› 2023, Vol. 43 ›› Issue (7): 592-599.doi: 10.13591/j.cnki.kqyx.2023.07.003
• Basic Research • Previous Articles Next Articles
FENG Zehua1,2,3,QIU Shuang1,2,3,XU Xuanwen1,2,3,ZHENG Kai3(),XU Yan1,2,3(
)
Revised:
2023-04-13
Online:
2023-07-28
Published:
2023-07-28
CLC Number:
FENG Zehua, QIU Shuang, XU Xuanwen, ZHENG Kai, XU Yan. In vitro anti-inflammatory effects of mesoporous bioactive glasses/polycaprolactone fibrous bone tissue engineering scaffolds[J]. Stomatology, 2023, 43(7): 592-599.
Tab.1
Primer designs"
基因 | 正向引物(5'→3') | 反向引物(5'→3') |
---|---|---|
IL-4 | CAAGGAACACCACGGAGAACGAG | TTCTTCAAGCACGGAGGTACATCAC |
IL-1β | TTCAGGCAGGCAGTATCACTC | GAAGGTCCACGGGAAAGACAC |
iNOs | GCACTGGGCTGAGAAAGAGAACC | TGCTCCTCTCCACAACCTCCTG |
TNF-α | CAGGCGGTGCCTATGTCTC | CGATCACCCCGAAGTTCAGTAG |
GAPDH | ACCCAGAAGACTGTGGATGG | CACATTGGGGGTAGGAACAC |
Tab.3
The effect of PCL@MBGN extract on the transcription level of inflammatory related cytokine genes"
组别 | IL-1β | TNF-α | iNOs | IL-4 |
---|---|---|---|---|
空白对照组 | 1.00 | 1.00 | 1.00 | 1.00 |
LPS组 | 2.56±0.03* | 2.22±0.01* | 1.52±0.03* | 0.82±0.02* |
LPS+PCL@0MBGN组 | 2.43±0.02△ | 1.97±0.04△ | 1.47±0.02△ | 2.47±0.01△ |
LPS+PCL@100MBGN组 | 2.34±0.02△# | 1.84±0.03△ | 1.45±0.03△ | 4.45±0.01△# |
LPS+PCL@150MBGN组 | 2.32±0.02△# | 1.78±0.01△# | 1.41±0.01△# | 4.60±0.02△# |
[1] |
Slots J. Periodontitis: Facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1):7-23.
doi: 10.1111/prd.12221 pmid: 28758294 |
[2] |
Sculean A, Nikolidakis D, Nikou G, et al. Biomaterials for promoting periodontal regeneration in human intrabony defects: A systematic review[J]. Periodontol 2000, 2015, 68(1):182-216.
doi: 10.1111/prd.12086 pmid: 25867987 |
[3] | Park JY, Park SH, Kim MG, et al. Biomimetic scaffolds for bone tissue engineering[M]. Biomimetic Medical Materials. Singapore: Springer, 2018:109-121. |
[4] |
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications[J]. Adv Drug Deliv Rev, 2019, 144:148-161.
doi: 10.1016/j.addr.2019.08.010 |
[5] |
Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123:14-21.
doi: 10.1016/j.semcdb.2021.05.014 |
[6] | Dash TK, Konkimalla VB. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review[J]. J Control Release, 2012, 158(1):1533. |
[7] | 牛丽娜, 沈敏娟, 方明. 口腔种植成骨材料的研究现状及进展[J]. 口腔医学, 2023, 43(1):11-17. |
[8] |
Zheng K, Niu W, Lei B, et al. Immunomodulatory bioactive glasses for tissue regeneration[J]. Acta Biomater, 2021, 133:168-186.
doi: 10.1016/j.actbio.2021.08.023 pmid: 34418539 |
[9] |
Pantulap U, Arango-Ospina M, Boccaccini AR. Bioactive glasses incorporating less-common ions to improve biological and physical properties[J]. J Mater Sci: Mater Med, 2022, 33(1):3.
doi: 10.1007/s10856-021-06626-3 |
[10] |
Chen ZY, Yan XC, Yin S, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth[J]. Mater Sci Eng C Mater Biol Appl, 2020, 106:110289.
doi: 10.1016/j.msec.2019.110289 |
[11] |
Chen LJ, Liu J, Zhang YL, et al. The toxicity of silica nanoparticles to the immune system[J]. Nanomedicine (Lond), 2018, 13(15):1939-1962.
doi: 10.2217/nnm-2018-0076 |
[12] |
Awad K, Ahuja N, Fiedler M, et al. Ionic silicon protects oxidative damage and promotes skeletal muscle cell regeneration[J]. Int J Mol Sci, 2021, 22(2):497.
doi: 10.3390/ijms22020497 |
[13] |
Zhang JL, Wu Q, Yin CC, et al. Sustained calcium ion release from bioceramics promotes CaSR-mediated M2 macrophage polarization for osteoinduction[J]. J Leukoc Biol, 2021, 110(3):485-496.
doi: 10.1002/JLB.3MA0321-739R |
[14] |
Li Y, Chen X, Jin RH, et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs[J]. Sci Adv, 2021, 7(9):eabd6740.
doi: 10.1126/sciadv.abd6740 |
[15] |
Lee S, Yun HS, Kim SH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis[J]. Biomaterials, 2011, 32(35):9434-9443.
doi: 10.1016/j.biomaterials.2011.08.042 pmid: 21889200 |
[16] |
Cheng PY, Li SY, Chen HY. Macrophages in lung injury, repair, and fibrosis[J]. Cells, 2021, 10(2):436.
doi: 10.3390/cells10020436 |
[17] |
Wang YW, Xu DP, Liu Y, et al. The effect of tumor necrosis factor-α at different concentrations on osteogenetic differentiation of bone marrow mesenchymal stem cells[J]. J Craniofac Surg, 2015, 26(7):2081-2085.
doi: 10.1097/SCS.0000000000001971 |
[18] |
Amarasekara DS, Yun H, Kim S, et al. Regulation of osteoclast differentiation by cytokine networks[J]. Immune Netw, 2018, 18(1):e8.
doi: 10.4110/in.2018.18.e8 |
[19] |
Yao ZQ, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation[J]. Cells, 2021, 11(1):132.
doi: 10.3390/cells11010132 |
[20] |
Wang TT, He CQ. TNF-α and IL-6: The link between immune and bone system[J]. Curr Drug Targets, 2020, 21(3):213-227.
doi: 10.2174/1389450120666190821161259 pmid: 31433756 |
[21] |
Zhang YM, Li XQ, Chihara T, et al. Effect of TNF-α and IL-6 on compact bone-derived cells[J]. Tissue Eng Regen Med, 2021, 18(3):441-451.
doi: 10.1007/s13770-021-00336-1 pmid: 33847914 |
[22] |
Mo QY, Zhang W, Zhu AJ, et al. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: Current conclusions and controversies[J]. Hum Cell, 2022, 35(4):957-971.
doi: 10.1007/s13577-022-00711-7 pmid: 35522425 |
[23] |
Steeve KT, Marc P, Sandrine T, et al. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology[J]. Cytokine Growth Factor Rev, 2004, 15(1):49-60.
doi: 10.1016/j.cytogfr.2003.10.005 |
[24] |
Yokota K, Sato K, Miyazaki T, et al. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis[J]. Arthritis Rheumatol, 2021, 73(7):1145-1154.
doi: 10.1002/art.v73.7 |
[25] |
Ansalone C, Cole J, Chilaka S, et al. TNF is a homoeostatic regulator of distinct epigenetically primed human osteoclast precursors[J]. Ann Rheum Dis, 2021, 80(6):748-757.
doi: 10.1136/annrheumdis-2020-219262 pmid: 33692019 |
[26] |
Mody N, Parhami F, Sarafian TA, et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells[J]. Free Radic Biol Med, 2001, 31(4):509-519.
doi: 10.1016/S0891-5849(01)00610-4 |
[27] |
Tao HQ, Ge GR, Liang XL, et al. ROS signaling cascades: Dual regulations for osteoclast and osteoblast[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(10):1055-1062.
doi: 10.1093/abbs/gmaa098 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||