Stomatology ›› 2025, Vol. 45 ›› Issue (6): 418-423.doi: 10.13591/j.cnki.kqyx.2025.06.004
• Basic and Clinical Research • Previous Articles Next Articles
GENG Mingzhu1,2,3, MU Wenqing1,2,3, QIU Lin1,2,3, ZHANG Wei1,2,3()
Received:
2025-01-22
Online:
2025-06-28
Published:
2025-07-08
CLC Number:
GENG Mingzhu, MU Wenqing, QIU Lin, ZHANG Wei. miR-129-1-3p inhibits osteogenic differentiation of human bone marrow mesenchymal stem cells via BMP2/SMAD1 signaling pathway[J]. Stomatology, 2025, 45(6): 418-423.
Tab.1
Primer sequence"
基因名称 | 引物序列(5'→3') |
---|---|
RUNX2-F | GACGAGGCAAGAGTTTCACC |
RUNX2-R | GGTTCCCGAGGTCCATCTAC |
BMP2-F | TTCGGCCTGAAACAGAGACC |
BMP2-R | CCTGAGTGCCTGCGATACAG |
OCN-F | CTACCTGTATCAA |
OCN-R | GGATTGAGCTCACACACCT |
miR-129-1-3p RT | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCA-CTGGATACGACATACTT |
miR-129-1-3p-F | ACCATTCAAAGCCCTTACCCCAA |
miR-129-1-3p-R | ATCCAGTGCAGGGTCCGAGG |
GAPDH-F | CAATGACCCCTTCATTGACC |
GAPDH-R | TTGATTTTGGAGGGATCTCG |
[1] | Ensrud KE, Crandall CJ. Osteoporosis[J]. Ann Intern Med, 2024, 177(1): ITC1-ITC16. |
[2] |
Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis[J]. Am J Obstet Gynecol, 2006, 194(2 Suppl): S3-11.
doi: 10.1016/j.ajog.2005.08.047 pmid: 16448873 |
[3] | Ramchand SK, Leder BZ. Sequential therapy for the long-term treatment of postmenopausal osteoporosis[J]. J Clin Endocrinol Metab, 2024, 109(2): 303-311. |
[4] |
Pittenger MF, MacKay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
doi: 10.1126/science.284.5411.143 pmid: 10102814 |
[5] | Gao Y, Chen N, Fu Z, et al. Progress of Wnt signaling pathway in osteoporosis[J]. Biomolecules, 2023, 13(3): 483. |
[6] |
Bonor J, Adams EL, Bragdon B, et al. Initiation of BMP2 signaling in domains on the plasma membrane[J]. J Cell Physiol, 2012, 227(7): 2880-2888.
doi: 10.1002/jcp.23032 pmid: 21938723 |
[7] | Wang Z, Bao HW, Xu YJ. Cnidium lactone prevents bone loss in an ovariectomized rat model through the estrogen-α/BMP-2/Smad signaling pathway[J]. J Gene Med, 2020, 22(8): e3198. |
[8] |
Lu TX, Rothenberg ME. microRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
doi: S0091-6749(17)31593-2 pmid: 29074454 |
[9] | Fesler A, Zhai H, Ju J. miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer[J]. Onco Targets Ther, 2014, 7: 1481-1485. |
[10] | Fu R, Yang P, Sajid A, et al. Avenanthramide A induces cellular senescence miR-129-3p/Pirh2/p53 signaling pathway to suppress colon cancer growth[J]. J Agric Food Chem, 2019, 67(17): 4808-4816. |
[11] | Ma L, Chen X, Li C, et al. miR-129-5p and-3p co-target WWP1 to suppress gastric cancer proliferation and migration[J]. J Cell Biochem, 2019, 120(5): 7527-7538. |
[12] | Wu YF, Ou CC, Chien PJ, et al. Chidamide-induced ROS accumulation and miR-129-3p-dependent cell cycle arrest in non-small lung cancer cells[J]. Phytomedicine, 2019, 56: 94-102. |
[13] |
Li Q, Qin M, Tan Q, et al. MicroRNA-129-1-3p protects cardiomyocytes from pirarubicin-induced apoptosis by down-regulating the GRIN2D-mediated Ca2+ signalling pathway[J]. J Cell Mol Med, 2020, 24(3): 2260-2271.
doi: 10.1111/jcmm.14908 pmid: 31957170 |
[14] | Yin C, Tian Y, Yu Y, et al. miR-129-5p inhibits bone formation through TCF4[J]. Front Cell Dev Biol, 2020, 8: 600641. |
[15] | Zhao C, Gu Y, Wang Y, et al. miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration repressing Dkk3[J]. Stem Cells Int, 2021, 2021(1): 7435605. |
[16] |
Chen R, Ye B, Xie H, et al. miR-129-3p alleviates chondrocyte apoptosis in knee joint fracture-induced osteoarthritis through CPEB1[J]. J Orthop Surg Res, 2020, 15(1): 552.
doi: 10.1186/s13018-020-02070-1 pmid: 33228708 |
[17] |
Reid IR. A broader strategy for osteoporosis interventions[J]. Nat Rev Endocrinol, 2020, 16(6): 333-339.
doi: 10.1038/s41574-020-0339-7 pmid: 32203407 |
[18] | Ayers C, Kansagara D, Lazur B, et al. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: A living systematic review and network meta-analysis for the American college of physicians[J]. Ann Intern Med, 2023, 176(2): 182-195. |
[19] |
Zhao Y, He JW, Qiu T, et al. Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases[J]. Stem Cell Res Ther, 2022, 13(1): 201.
doi: 10.1186/s13287-022-02852-w pmid: 35578312 |
[20] | Pérez-Campo FM, Santurtún A, García-Ibarbia C, et al. Osterix and RUNX2 are transcriptional regulators of sclerostin in human bone[J]. Calcif Tissue Int, 2016, 99(3): 302-309. |
[21] |
Gori F, Thomas T, Hicok KC, et al. Differentiation of human marrow stromal precursor cells:Bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation[J]. J Bone Miner Res, 1999, 14(9): 1522-1535.
pmid: 10469280 |
[22] |
Bialek P, Kern B, Yang X, et al. A twist code determines the onset of osteoblast differentiation[J]. Dev Cell, 2004, 6(3): 423-435.
doi: 10.1016/s1534-5807(04)00058-9 pmid: 15030764 |
[23] |
Yi X, Wright LE, Pagnotti GM, et al. Mechanical suppression of breast cancer cell invasion and paracrine signaling to osteoclasts requires nucleo-cytoskeletal connectivity[J]. Bone Res, 2020, 8(1): 40.
doi: 10.1038/s41413-020-00111-3 pmid: 33298883 |
[24] |
Haffner-Luntzer M, Kovtun A, Lackner I, et al. Estrogen receptor α-(ERα), but not ERβ-signaling, is crucially involved in mechanostimulation of bone fracture healing by whole-body vibration[J]. Bone, 2018, 110: 11-20.
doi: S8756-3282(18)30017-6 pmid: 29367057 |
[25] | Fang S, He T, You M, et al. Glucocorticoids promote steroid-induced osteonecrosis of the femoral head by down-regulating serum alpha-2-macroglobulin to induce oxidative stress and facilitate SIRT2-mediated BMP2 deacetylation[J]. Free Radic Biol Med, 2024, 213: 208-221. |
[26] | Luu YK, Capilla E, Rosen CJ, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity[J]. J Bone Miner Res, 2009, 24(1): 50-61. |
[27] |
Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: From cells to clinic[J]. Trends Genet, 2022, 38(6): 613-626.
doi: 10.1016/j.tig.2022.02.006 pmid: 35303998 |
[28] |
Rupaimoole R, Slack FJ. MicroRNA therapeutics:Towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3): 203-222.
doi: 10.1038/nrd.2016.246 pmid: 28209991 |
[29] |
Zhang Z, Wang M, Zheng Y, et al. MicroRNA-223 negatively regulates the osteogenic differentiation of periodontal ligament derived cells by directly targeting growth factor receptors[J]. J Transl Med, 2022, 20(1): 465.
doi: 10.1186/s12967-022-03676-1 pmid: 36221121 |
[30] | Cao Y, Lv Q, Lv C. MicroRNA-153 suppresses the osteogenic differentiation of human mesenchymal stem cells by targeting bone morphogenetic protein receptor type Ⅱ[J]. Int J Mol Med, 2015, 36(3): 760-766. |
[31] |
Marupanthorn K, Tantrawatpan C, Kheolamai P, et al. MicroRNA treatment modulates osteogenic differentiation potential of mesenchymal stem cells derived from human chorion and placenta[J]. Sci Rep, 2021, 11(1): 7670.
doi: 10.1038/s41598-021-87298-5 pmid: 33828198 |
[32] | Maeda K, Kobayashi Y, Koide M, et al. The regulation of bone metabolism and disorders by Wnt signaling[J]. Int J Mol Sci, 2019, 20(22): 5525. |
[33] | Zieba JT, Chen YT, Lee BH, et al. Notch Signaling in Skeletal Development, Homeostasis and Pathogenesis[J]. Biomolecules, 2020, 10(2): 332. |
[34] |
Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci, 2012, 8(2): 272-288.
doi: 10.7150/ijbs.2929 pmid: 22298955 |
[35] |
Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair[J]. Nat Rev Endocrinol, 2016, 12(4): 203-221.
doi: 10.1038/nrendo.2016.12 pmid: 26893264 |
[36] | Li Y, Chen G, He Y, et al. Selenomethionine-modified polyethylenimine-based nanoparticles loaded with miR-132-3p inhibitor-biofunctionalized titanium implants for improved osteointegration[J]. ACS Biomater Sci Eng, 2021, 7(10): 4933-4945. |
[37] | Rojo Arias JE, Busskamp V. Challenges in microRNAs’ targetome prediction and validation[J]. Neural Regen Res, 2019, 14(10): 1672-1677. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||